HEAL DSpace

Μελέτη επίδοσης εφαρμογών υψηλής έντασης σε ετερογενείς αρχιτεκτονικές

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Μάρκου, Αθανάσιος el
dc.contributor.author Markou, Athanasios en
dc.date.accessioned 2022-01-10T11:59:22Z
dc.date.available 2022-01-10T11:59:22Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/54293
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.21991
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject Heterogeneous architectures el
dc.subject High performance computing en
dc.subject Cloud computing en
dc.subject Performance modeling en
dc.subject Power efficiency en
dc.title Μελέτη επίδοσης εφαρμογών υψηλής έντασης σε ετερογενείς αρχιτεκτονικές el
heal.type bachelorThesis
heal.classification Parallel processing systems en
heal.language el
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2021-06-23
heal.abstract While developing their parallel high-intensity applications researchers come across a crucial dilemma. The dilemma is whether their application should be targeted for a CPU- architecture or a GPU-architecture. A common strategy for researchers is to first implement an OpenMP version of their application to have a quantitative estimation of how well their algorithm leverages from the use of a multicore CPU-node. If the performance attained is not sufficient one has to reconsider his/her approach. Tuning perfectly your OpenMP code to utilize special architectural features of the target CPU-node might not always be the solution that yields the optimal performance, maybe another architecture is more suitable for leveraging from the application’s scalability and thus yielding the optimal performance. Maybe one GPU is more suitable for this applicaton. An additional concern one has to take into consideration is the overall diversity of the available hardware. The modern landscape of HPC and Datacenter Computing has drastically changed thanks to cloud server vendors (Amazon, Google, Microsoft, etc), researchers are now able to develop and run their applications on a wide variety of different CPUs and different GPUs. So the above question/dilemma can be stated as: "Given an OpenMP implementation of an application and the available CPUs and GPUs, is it worth proceeding to an OpenMP-to-CUDA transformation? What order of magnitude of performance improvement should one expect from such a transformation?" This diploma thesis aims to the development of a model that provides a performance and power prediction. More specifically, for an application our model predicts (a) the order of magnitude of the relative speedup that a specific GPU offers relatively to a specific CPU, (b) the most power efficient architecture between the two. en
heal.advisorName Γκούμας, Γεώργιος el
heal.committeeMemberName Γκούμας, Γεώργιος el
heal.committeeMemberName Κοζύρης, Νεκτάριος el
heal.committeeMemberName Πνευματικάτος, Διονύσιος el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών el
heal.academicPublisherID ntua
heal.numberOfPages 114 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα