HEAL DSpace

Machine learning methods for modelling and analysis of time series signals in geoinformatics

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kaselimi, Maria el
dc.contributor.author Κασελίμη, Μαρία en
dc.date.accessioned 2022-02-16T15:54:58Z
dc.date.available 2022-02-16T15:54:58Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/54734
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.22432
dc.rights Αναφορά Δημιουργού 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by/3.0/gr/ *
dc.subject Deep learning en
dc.subject Long Short-term Memory en
dc.subject Convolutional Neural Networks en
dc.subject Total Electron Content (TEC) en
dc.subject Energy Disaggregation en
dc.subject Μηχανική Μάθηση el
dc.subject Χρονοσειρές el
dc.subject Μηχανική Μάθηση el
dc.subject Ίονοσφαιρική δραστηριότητα el
dc.subject Ενεργειακός Επιμερισμός el
dc.subject Αναδρομικά νευρωνικά δίκτυα el
dc.title Machine learning methods for modelling and analysis of time series signals in geoinformatics en
heal.type doctoralThesis
heal.secondaryTitle Τεχνικές μηχανικής μάθησης για τη μοντελοποίηση και ανάλυση χρονοσειρών σε εφαρμογές γεωπληροφορικής el
heal.classification Geoinformatics en
heal.classification Deep Learning en
heal.classification Satellite Geodesy en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2021-09-06
heal.abstract The analysis of experimental data that have been observed at different points in time leads to new and unique problems in statistical modeling and inference. The obvious correlation introduced by the sampling of adjacent points in time can severely restrict the applicability of the many conventional statistical methods traditionally dependent on the assumption that these adjacent observations are independent and identically distributed. The systematic approach by which one goes about answering the mathematical and statistical questions posed by these time correlations is commonly referred to as time series analysis (TSA). Time series modeling (TSM) plays a key role in a wide range of real-life problems that have a temporal component. Modern time series problems often pose significant challenges for the existing techniques both in terms of their complexity, structure and size. While traditional methods have focused on parametric models informed by domain expertise, modern machine learning (ML) methods provide a means to learn temporal dynamics in a purely data-driven manner. With the increasing data availability and computing power in recent times, machine learning has become a vital part of the next generation of time series models. Thus, there is both a great need and an exciting opportunity for the machine learning community to develop theory, models and algorithms specifically for the purpose of processing and analyzing time series data. The impact of time series modelling and analysis on scientific applications can be partially documented by analysing problems of various diverse fields in which important time series problems may arise. Modern time series problems are characterized by complexity. Also, since real-world systems often evolve under transient conditions, the signals/time series tend to exhibit various forms of non-stationarity. As far as mathematical models are concerned, they can be categorized in many different ways. They can be linear or non-linear, static or dynamic, continuous distinct in time, deterministic or contemplative. The proper model selection to accurately describe a system depends on the system under study, on whether the operation of the system is a-priory known or not, as well as on the purpose of the implementation. This dissertation presents developments in nonlinear and non-static time series models under a machine learning framework, comparing their performance in real-life application scenarios related to geoinformatics as well as environmental applications. In this dissertation is provided a comparative analysis that evaluates the performance of several deep learning (DL) architectures on a large number of time series datasets of different nature and for different applications. Two main fruitful research fields are discussed here which were strategically chosen in order to address current cross-disciplinary research priorities attracting the interest of Geoinformatics communities. The first problem is related to ionospheric Total Electron Content (TEC) modeling which is an important issue in many real-time Global Navigation System Satellites (GNSS) applications. Reliable and fast knowledge about ionospheric variations becomes increasingly important. GNSS users of single-frequency receivers and satellite navigation systems need accurate corrections to remove signal degradation effects caused by the ionosphere. Ionospheric modeling using signal-processing techniques is the subject of discussion in the present contribution. The next problem under discussion is energy disaggregation which is an important issue for energy efficiency and energy consumption awareness. Reliable and fast knowledge about residential energy consumption at appliance level becomes increasingly important nowadays and it is an important mitigation measure to prevent energy wastage. Energy disaggregation or Non-intrusive load monitoring (NILM) is a single channel blind source separation problem where the task is to estimate the consumption of each electrical appliance given the total energy consumption. For both problems various deep learning models (DL) are proposed that cover various aspects of the problem under study, whereas experimental results indicate the proposed methods' superiority compared to the current state of the art. en
heal.sponsor Το έργο συγχρηματοδοτείται από την Ελλάδα και την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) μέσω του Επιχειρησιακού Προγράμματος «Ανάπτυξη Ανθρώπινου Δυναμικού, Εκπαίδευση και Διά Βίου Μάθηση», στο πλαίσιο της Πράξης «Ενίσχυση του ανθρώπινου ερευνητικού δυναμικού μέσω της υλοποίησης διδακτορικής έρευνας» (MIS-5000432), που υλοποιεί το Ίδρυμα Κρατικών Υποτροφιών (ΙΚΥ) el
heal.advisorName Doulamis, Nikolaos
heal.advisorName Δουλάμης, Νικόλαος el
heal.committeeMemberName Δεληκαράογλου, Δημήτριος el
heal.committeeMemberName Σταφυλοπάτης, Ανδρέας Γεώργιος el
heal.committeeMemberName Βουλόδημος, Αθανάσιος el
heal.committeeMemberName Βαρβαρίγος, Εμμανουήλ el
heal.committeeMemberName Γκίκας, Βασίλειος el
heal.committeeMemberName Τσακίρη, Μαρία el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Αγρονόμων και Τοπογράφων Μηχανικών el
heal.academicPublisherID ntua
heal.numberOfPages 160 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού 3.0 Ελλάδα