dc.contributor.author | Abdalghaffar, Emad![]() |
el |
dc.date.accessioned | 2022-02-18T15:59:41Z | |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/54771 | |
dc.identifier.uri | http://dx.doi.org/10.26240/heal.ntua.22469 | |
dc.rights | Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 3.0 Ελλάδα | * |
dc.rights | Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 3.0 Ελλάδα | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/gr/ | * |
dc.subject | Structural optimization | en |
dc.subject | Metaheuristic optimization algorithms | en |
dc.subject | Neural networks | en |
dc.subject | Machine learning | en |
dc.subject | Evolutionary optimization | en |
dc.subject | Swarm intelligence optimization | en |
dc.title | Evolutionary computation and swarm intelligence algorithms in structural optimization | en |
heal.type | masterThesis | |
heal.generalDescription | Optimization is the heart of many natural processes, to name a few: the natural selection phenomenon in the biological evolution theory that is based on the survival-of-the-fittest principle, the social swarming behavior of birds or the foraging strategies of ants. Hence, the concept of simulating such natural phenomena into computational mechanics in form of computer algorithms may offer a very promising approach in the nowadays computer-aided engineering designs. | en |
heal.classification | Structural Optimization | en |
heal.dateAvailable | 2023-02-17T22:00:00Z | |
heal.language | en | |
heal.access | embargo | |
heal.recordProvider | ntua | el |
heal.publicationDate | 2021-07-07 | |
heal.abstract | This Pharaonic-Grecian work aims to frame the art of the evolutionary and swarm based structural optimization. That is through five chapters. At the first chapter, the structural optimization problem is properly defined as well to elaborating its basic components. Then, an intensive review of the literature is introduced, through screening the most recent and most cited scientific articles in the topic during the first two decades of the 21st century. Afterwards, a set of the most promising and trending state-of-the-art algorithms is introduced through descriptive paragraphs that elaborate how each algorithm works. Following such elaboration of the literature and the state of the art, numerical tests assessing the performance of these most promising algorithms have been done in order to identify the capability of each algorithm, and eventually estimating the future trends in Structural Optimization. | en |
heal.advisorName | Lagaros, Nikos | en |
heal.advisorName | Λαγαρός, Νικόλαος | el |
heal.committeeMemberName | Koumousis, Vlasis | en |
heal.committeeMemberName | Κουμούσης, Βλάσιος | el |
heal.committeeMemberName | Triantafyllou, Savvas | en |
heal.committeeMemberName | Τριανταφύλλου, Σάββας | el |
heal.academicPublisher | Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Πολιτικών Μηχανικών. Τομέας Δομοστατικής. Εργαστήριο Στατικής και Αντισεισμικών Ερευνών | el |
heal.academicPublisherID | ntua | |
heal.numberOfPages | 62 σ. | el |
heal.fullTextAvailability | false |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: