dc.contributor.author | Korsak, Sevastianos | en |
dc.date.accessioned | 2022-02-28T09:25:06Z | |
dc.date.available | 2022-02-28T09:25:06Z | |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/54863 | |
dc.identifier.uri | http://dx.doi.org/10.26240/heal.ntua.22561 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ | * |
dc.subject | Ising model | en |
dc.subject | Mapping | en |
dc.subject | Machine Learning | en |
dc.subject | Magnetism | en |
dc.subject | Ferromagnetism | en |
dc.subject | Complexity | en |
dc.subject | Complexity Measures | en |
dc.title | Machine-Learning-Based Mapping of the Ising Model to Rough Surfaces | en |
dc.contributor.department | Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Μαθηματική Προτυποποίηση σε Σύγχρονες Τεχνολογίες και στα Χρηματοοικονομικά” | el |
heal.type | masterThesis | |
heal.classification | Complex Systems | en |
heal.classification | Computational Physics | en |
heal.classification | Pattern Recognition | en |
heal.classification | Theoretical Physics | en |
heal.classification | Discrete Systems | en |
heal.language | en | |
heal.access | free | |
heal.recordProvider | ntua | el |
heal.publicationDate | 2021-07-22 | |
heal.abstract | In this master’s thesis we created a mapping between Ising model and Gaussian Rough Surfaces. To reach our goal, we studied the complexity measures of the article ‘How Complex Is Your Classification Problem?: A Survey on Measuring Classification Complexity’ by Ana C. Lorena, Luis P. F. Garcia, Jens Lehnmann, Marcilio C. P. Souto, Tim Kam Ho, and so on we defined some new complexity measures inspired from Boltzmann Machines algorithm. Some of these complexity measures give us information for the critical region of Ising model and thus can be used as diagnostics for a new simulation algorithm. In this manner, using the Rough Surfaces simulation algorithm, which was proposed by Yang, Li, Wang, and Hong in their article with title ‘Numerical Simulation of 3D Rough Surfaces and Analysis of Interfacial Contact Characteristics’, comparing these results with Metropolis-Hastings algorithm in respect to two similarity measures and using some Machine Learning techniques, we succeeded to create an algorithm that give very similar results to Ising model’s. To reassure the good behavior of the algorithm, we computed some known statistical quantities (i.e. mean magnetization, susceptibility or correlation functions), and some complexity measures that we defined in previous chapters of the thesis. Finally, we ended up in the conclusion that we can create a new simulation algorithm using Gaussian Rough Surfaces, which has the advantage that can produce lattices in equilibrium, avoiding burn-in period, with very low autocorrelations in respect to time. Moreover, our approach can be seen as a connection between a dynamical model like this of Ising, and a geometrically-based algorithm like Rough Surfaces simulation. | en |
heal.advisorName | Diakonos, Fotis | |
heal.advisorName | Costantoudis, Vasilios | |
heal.committeeMemberName | Provata, Astero | |
heal.committeeMemberName | Costantoudis, Vasilios | en |
heal.committeeMemberName | Diakonos, Fotis | |
heal.academicPublisher | Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών | el |
heal.academicPublisherID | ntua | |
heal.numberOfPages | 124 σ. | el |
heal.fullTextAvailability | false |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: