HEAL DSpace

Machine-Learning-Based Mapping of the Ising Model to Rough Surfaces

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Korsak, Sevastianos en
dc.date.accessioned 2022-02-28T09:25:06Z
dc.date.available 2022-02-28T09:25:06Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/54863
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.22561
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject Ising model en
dc.subject Mapping en
dc.subject Machine Learning en
dc.subject Magnetism en
dc.subject Ferromagnetism en
dc.subject Complexity en
dc.subject Complexity Measures en
dc.title Machine-Learning-Based Mapping of the Ising Model to Rough Surfaces en
dc.contributor.department Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Μαθηματική Προτυποποίηση σε Σύγχρονες Τεχνολογίες και στα Χρηματοοικονομικά” el
heal.type masterThesis
heal.classification Complex Systems en
heal.classification Computational Physics en
heal.classification Pattern Recognition en
heal.classification Theoretical Physics en
heal.classification Discrete Systems en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2021-07-22
heal.abstract In this master’s thesis we created a mapping between Ising model and Gaussian Rough Surfaces. To reach our goal, we studied the complexity measures of the article ‘How Complex Is Your Classification Problem?: A Survey on Measuring Classification Complexity’ by Ana C. Lorena, Luis P. F. Garcia, Jens Lehnmann, Marcilio C. P. Souto, Tim Kam Ho, and so on we defined some new complexity measures inspired from Boltzmann Machines algorithm. Some of these complexity measures give us information for the critical region of Ising model and thus can be used as diagnostics for a new simulation algorithm. In this manner, using the Rough Surfaces simulation algorithm, which was proposed by Yang, Li, Wang, and Hong in their article with title ‘Numerical Simulation of 3D Rough Surfaces and Analysis of Interfacial Contact Characteristics’, comparing these results with Metropolis-Hastings algorithm in respect to two similarity measures and using some Machine Learning techniques, we succeeded to create an algorithm that give very similar results to Ising model’s. To reassure the good behavior of the algorithm, we computed some known statistical quantities (i.e. mean magnetization, susceptibility or correlation functions), and some complexity measures that we defined in previous chapters of the thesis. Finally, we ended up in the conclusion that we can create a new simulation algorithm using Gaussian Rough Surfaces, which has the advantage that can produce lattices in equilibrium, avoiding burn-in period, with very low autocorrelations in respect to time. Moreover, our approach can be seen as a connection between a dynamical model like this of Ising, and a geometrically-based algorithm like Rough Surfaces simulation. en
heal.advisorName Diakonos, Fotis
heal.advisorName Costantoudis, Vasilios
heal.committeeMemberName Provata, Astero
heal.committeeMemberName Costantoudis, Vasilios en
heal.committeeMemberName Diakonos, Fotis
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών el
heal.academicPublisherID ntua
heal.numberOfPages 124 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα