dc.contributor.author |
Κιμωνίδης, Αλέξανδρος
|
|
dc.contributor.author |
Kimonidis, Alexandros
|
en |
dc.date.accessioned |
2022-03-02T10:18:56Z |
|
dc.date.available |
2022-03-02T10:18:56Z |
|
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/54900 |
|
dc.identifier.uri |
http://dx.doi.org/10.26240/heal.ntua.22598 |
|
dc.rights |
Default License |
|
dc.subject |
Cloud |
en |
dc.subject |
Management |
en |
dc.subject |
Resource |
en |
dc.subject |
AI |
en |
dc.subject |
Deep reinforcement learning |
en |
dc.subject |
Νέφος |
el |
dc.subject |
Διαχείριση πόρων |
el |
dc.subject |
Τεχνητή νοημοσύνη |
el |
dc.subject |
Βαθιά ενισχυμένη εκμάθηση |
el |
dc.subject |
Τεχνητή μάθηση |
el |
dc.title |
Deep reinforcement learning for tail latency regulation in co-located applications through cooperative core and cache allocation |
en |
heal.type |
bachelorThesis |
|
heal.classification |
Resource Management |
en |
heal.classification |
Cloud |
el |
heal.classification |
Deep Reinforcement Learning |
el |
heal.language |
el |
|
heal.language |
en |
|
heal.access |
free |
|
heal.recordProvider |
ntua |
el |
heal.publicationDate |
2021-10-25 |
|
heal.abstract |
The amount of workloads ran on the Cloud is growing all the time. Data center
operators and cloud providers have embraced workload co-location and multi-
tenancy as first-class system design concerns to efficiently service and manage
these massive computing needs. Current state-of-the-art resource managers
place applications on the available pool of resources using standard metrics
such as CPU or memory usage. As a result, current state-of-the-art resource
managers fail to achieve adequate resource utilization.
In this thesis, we design a resource manager that leverages deep reinforce-
ment learning for its policy and uses performance monitoring counters which
are a more complex metric that is able to determine a machine’s current state.
We showcase the impact of applying stress on different server resources and the
need for a better scheduler that considers the correct metrics. We integrate our
solution with OpenAI Gym, one of the most widely used tool-kits for devel-
oping and comparing reinforcement learning algorithms, and we show that we
can achieve higher resource usage compared to the default scheduler as well as
other state-of-the-art schedulers. |
en |
heal.advisorName |
Σούντρης, Δημήτριος |
el |
heal.committeeMemberName |
Σούντρης, Δημήτριος |
el |
heal.committeeMemberName |
Τσανάκας, Παναγιώτης |
el |
heal.committeeMemberName |
Γκούμας, Γεώργιος |
el |
heal.academicPublisher |
Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών |
el |
heal.academicPublisherID |
ntua |
|
heal.numberOfPages |
97 σ. |
el |
heal.fullTextAvailability |
false |
|