HEAL DSpace

A software analysis tool for energy and time-aware function placement on the edge

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Γιάννος, Γαβριηλίδης el
dc.contributor.author Giannos, Gavriilidis en
dc.date.accessioned 2022-06-07T11:06:05Z
dc.date.available 2022-06-07T11:06:05Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/55253
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.22951
dc.rights Default License
dc.subject Διαχείριση πόρων el
dc.subject Κυβερνήτες el
dc.subject Ενορχήστρωση πακέτων el
dc.subject Διαδίκτυο των πραγμάτων el
dc.subject Μηχανική μάθηση el
dc.subject Resource management en
dc.subject Kubernetes en
dc.subject Container orchestration en
dc.subject Internet of things en
dc.subject Machine learning en
dc.title A software analysis tool for energy and time-aware function placement on the edge en
heal.type bachelorThesis
heal.classification Computer science en
heal.language el
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2022-02-03
heal.abstract In this thesis, we present a tool that proposes a way in which the individual functions of a monolithic code could run in a serverless environment, so that given a maximum runtime threshold, the minimum possible energy consumption in devices is achieved. These devices consist our serverless infrastructure (cluster), they are orchestrated by Kubernetes and the deployment of our code is managed by a scalable, fault-tolerant event-driven serverless platform called OpenFaaS. Our tool uses machine learning techniques for energy and time predictions and analyzes (profiles) the code file given in terms of memory allocation and the run-time required for each of its individual functions. The utilization of this information and the decision for the final proposal is achieved with the help of our self-developed minimization algorithm with approximate solution. en
heal.advisorName Σούντρης, Δημήτριος el
heal.committeeMemberName Τσανάκας, Παναγιώτης el
heal.committeeMemberName Πνευματικάτος, Διονύσιος el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών. Εργαστήριο Μικροϋπολογιστών και Ψηφιακών Συστημάτων VLSI el
heal.academicPublisherID ntua
heal.numberOfPages 96 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής