HEAL DSpace

Memory management in hybrid DRAM/NVM systems using LSTMs

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Σταυρακάκης, Κωνσταντίνος el
dc.contributor.author Stavrakakis, Konstantinos en
dc.date.accessioned 2022-06-14T09:27:33Z
dc.date.available 2022-06-14T09:27:33Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/55274
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.22972
dc.rights Αναφορά Δημιουργού 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by/3.0/gr/ *
dc.subject Μηχανική μάθηση el
dc.subject DRAM en
dc.subject Page scheduling en
dc.subject Non volatile memory en
dc.subject K-Means en
dc.subject Επαναληπτικά νευρωνικά δίκτυα el
dc.subject Long short term memory networks en
dc.title Memory management in hybrid DRAM/NVM systems using LSTMs en
heal.type bachelorThesis
heal.classification Αρχιτεκτονική υπολογιστών el
heal.classification Μηχανική μάθηση el
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2022-02-18
heal.abstract Heterogeneous memory technologies have been widely used in effort to address the ever-increasing demands of modern applications for larger main memory capacity. The new technologies showcase vastly greater differences in terms of capacity, latencies and bandwidth. This heterogeneity along with the the greater irregularity of emerging workloads, render state-of-the-art memory management solutions insufficient; thus calling for more intelligent methods. In this diploma Thesis, we design and evaluate a scheduler which intelligently places application data, on a Page granularity, across hybrid memory components using Artificial Neural Networks. The proposed Scheduler combines intelligent page placement decisions leveraging LSTM networks with existing history-based data tiering methods. The scheduler focuses the machine learning on a page subset whose timely movement will reveal most application performance improvement, while being mindful of computation resources. K-Means address space clustering is also utilized to augment the eviction policy used by the proposed scheduler in order to provide application performance boost. That boost is on average 10% according to our evaluation process. Our performance evaluation also indicates that the proposed Scheduler significantly reduces the performance gap between existing solutions and an oracle scheduler with a priori knowledge of the page access patterns, while being a potential candidate for designing low-power oriented Hybrid Memory Systems as well. en
heal.advisorName Σούντρης, Δημήτριος el
heal.committeeMemberName Σούντρης, Δημήτριος el
heal.committeeMemberName Τσανάκας, Παναγιώτης el
heal.committeeMemberName Γκούμας, Γεώργιος el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών el
heal.academicPublisherID ntua
heal.numberOfPages 115 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού 3.0 Ελλάδα