HEAL DSpace

Numerical optimization of a predictive model for the compressive strength of standard mortar

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Κουλογιάννης, Αναστάσιος el
dc.contributor.author Koulogiannis, Anastasios en
dc.date.accessioned 2022-06-16T10:36:08Z
dc.date.available 2022-06-16T10:36:08Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/55290
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.22988
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject Standard mortar en
dc.subject Resistance en
dc.subject Optimization en
dc.subject Hydration en
dc.subject Machine learning en
dc.title Numerical optimization of a predictive model for the compressive strength of standard mortar en
dc.title Αριθμητική βελτιστοποίηση ενός μοντέλου πρόβλεψης της θλιπτικής αντοχής ενός τυπικού κονιάματος el
heal.type bachelorThesis
heal.classification Structural engineering en
heal.language en
heal.access campus
heal.recordProvider ntua el
heal.publicationDate 2021-08-31
heal.abstract In the present work we will deal with the numerical optimization of a predictive model for the compressive strength of standard mortar based on the kinetics of hydration and the assembly of the phases, which was developed by the innovation center of Holcim. The goal of this work will be to optimize the code of the model to solve the memory leak problem and reduce the computation time during the reverse analysis on a large number of data, as well as its further development to include a new database with new thermodynamic data and new types of hydrates. We will also try to develop new models based on machine learning algorithms and compare their results and accuracy with the physical model. The ultimate goal of this work is to find the best descriptor for compressive strength, based on the assembly of the phases. This descriptor allows us an understandable physical modeling and satisfactory predictions of the compressive strength, for different types of compound cements, according to their chemical composition and fineness. en
heal.advisorName Γιαννής, Γιώργος el
heal.committeeMemberName Φραγκιαδάκης, Μιχαήλ el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Πολιτικών Μηχανικών. Τομέας Μεταφορών και Συγκοινωνιακής Υποδομής el
heal.academicPublisherID ntua
heal.numberOfPages 40 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα