HEAL DSpace

Non-Intrusive polynomial chaos expansion for aerodynamic uncertainty quanti cation & robust design with manufacturing imperfections

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Villette, Sergios en
dc.contributor.author Βιλλέτ, Σέργιος el
dc.date.accessioned 2022-06-27T11:21:55Z
dc.date.available 2022-06-27T11:21:55Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/55342
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.23040
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject CFD en
dc.subject niPCE en
dc.subject KLT en
dc.subject Robust design optimization en
dc.subject Uncertainty quantification en
dc.subject CFD en
dc.subject KLT en
dc.subject Στιβαρός σχεδιασμός el
dc.subject Ανάπτυγμα πολυωνυμικού χάους el
dc.subject Ποστικοποίηση αβεβαιότητας el
dc.title Non-Intrusive polynomial chaos expansion for aerodynamic uncertainty quanti cation & robust design with manufacturing imperfections en
dc.title Μη-επεμβατικό ανάπτυγμα πολυωνυμικού χάους για αεροδυναμικό στιβαρό σχεδιασμό υπό κατασκευαστικές ατέλειες el
heal.type bachelorThesis
heal.classification CFD en
heal.classification Robust design optimization en
heal.classification Uncertainty quantification en
heal.language el
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2022-02
heal.abstract In the field of aerodynamics, the geometrical and ow conditions of a certain shape are usually considered to be constants, while in reality they exhibit some stochasticity, which can have a varying effect on its performance. This thesis, stresses aerodynamic cases in which the geometrical-manufacturing uncertainties of a certain shape are taken into account, by proposing a computational process capable to, firstly, evaluate the stochasticity of their performance (uncertainty quantification) and, secondly, to optimize their stochastic performance (robust design). Therefore, this thesis presents the development of software, implementing the non-intrusive Polynomial Chaos Expansion and the Karhunen-Loeve Transform theories, in order to perform aerodynamic uncertainty quantification and robust design optimization on 2D shapes with manufacturing uncertainties. The Karhunen-Loeve Transform theory is used to simulate the real-time uncertainties that may occur during the manufacturing of aerodynamic shapes. The theory of Polynomial Chaos is based on the use of orthogonal polynomials to model the stochasticity of a certain phenomena, by analyzing its stochastic input and quantifying its stochastic output, though the form of its statistical moments. The Karhunen-Loeve Transform software developed as well as the OpenFOAM© Computational Fluid Dynamics solvers are coupled to an in-house non-intrusive Polynomial Chaos Expansion code, so as to quantify the stochastic aerodynamic performance of 2D imperfect geometries. Additionally, robust design is performed on such imperfect geometries, parameterized through Volumetric B-Splines, by optimizing the statistical moments of their performance, with respect to the design variables controlling the parameterized shape. This is achieved through the incorporation of the continuous adjoint optimization algorithm, developed by PCOpt/NTUA in the OpenFOAM environment, into the aforementioned Karhunen-Loeve Transform and non-intrusive Polynomial Chaos coupled algorithm. The Karhunen-Loeve Transform code is designed to recreate imperfect perturbations on any 2D geometry and when combined the generalist nature of the non-intrusive Polynomial Chaos Expansion mathematical tool, it grants the ability to the proposed method to cope with a wide variety of aerodynamic cases with shape uncertainties. Simultaneously, the deterministic adjoint optimization method greatly mitigates the computational cost needed to perform the uncertainty quantification and robust design processes, when compared to other stochastic methods often employed in literature, such as the Evolutionary Algorithms. en
heal.advisorName Γιαννάκογλου, Κυριάκος Χ. el
heal.committeeMemberName Γιαννάκογλου, Κυριάκος Χ. el
heal.committeeMemberName Μαθιουδάκης, Κωνσταντίνος el
heal.committeeMemberName Αρετάκης, Νικόλαος el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Μηχανολόγων Μηχανικών. Τομέας Ρευστών. Εργαστήριο Θερμικών Στροβιλομηχανών el
heal.academicPublisherID ntua
heal.numberOfPages 170 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα