HEAL DSpace

Algorithms for structural reliability

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Prentzas, Ioannis en
dc.contributor.author Πρέντζας, Ιωάννης el
dc.date.accessioned 2022-07-05T07:49:30Z
dc.date.available 2022-07-05T07:49:30Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/55360
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.23058
dc.description Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) "Επιστήμη Δεδομένων και Μηχανική Μάθηση"
dc.rights Default License
dc.subject Structural reliability en
dc.subject FORM en
dc.subject Monte carlo en
dc.subject Subset simulation en
dc.subject Machine learning en
dc.title Algorithms for structural reliability en
heal.type masterThesis
heal.secondaryTitle Computational tools and Machine learning Methods en
heal.classification Structural engineering en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2022-03-02
heal.abstract Structural reliability analysis provides a useful tool for safety assessment of engineering structures and enables performance of more rational risk evaluations. It is an alternative approach to traditional deterministic structural design, which takes into account the uncertain parameters characterizing the physical state of structure and its environment. Generally, structural reliability analysis is convenient and straightforward when the limit state function is formulated with an explicit function. However, in practical engineering, the limit state function is generally expressed as implicit function. The implicit limit state function presents great difficulties in structural reliability analysis when the most common methods are used, such as the first-order reliability method (FORM). Typically, when the implicit limit state function is evaluated implicitly using a numerical code, such as the finite element method. Although reliability analysis can be performed using the Monte Carlo simulation or Subset Simulation, a large number of FEM executions for structural analysis is time consuming, especially for large and complex structures with high reliability. Various regression models in combination with reliability methods have been used to solve reliability analysis problems involving the implicit limit state function. Gaussian process regression, and Support Vector machine are Machine Learning algorithms, which have been applied to approximate the limit state function, shortening the computational time, and the failure probability was predicted using reliability methods, such as Monte Carlo. The structural reliability methods have been applied to three structural analysis problems for calculating the probability of failure. The limit state equation is explicit in the first example, while the equation of the other examples includes the finite element method. Moreover, these equations have been approximated using the two machine learning regressions models. en
heal.advisorName Fragiadakis, Michalis en
heal.committeeMemberName Fragiadakis, Michalis en
heal.committeeMemberName Papadopoulos, Vissarion en
heal.committeeMemberName Thanopoulos, Pavlos en
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Πολιτικών Μηχανικών el
heal.academicPublisherID ntua
heal.numberOfPages 90 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής