HEAL DSpace

Numerical and Experimental Study of Classical Hydraulic Jump

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Retsinis, Eugene
dc.contributor.author Papanicolaou, Panayiotis
dc.date.accessioned 2022-08-29T13:44:09Z
dc.date.available 2022-08-29T13:44:09Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/55561
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.23259
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject Classical Hydraulic Jump el
dc.title Numerical and Experimental Study of Classical Hydraulic Jump en
heal.type journalArticle
heal.classification Open Channel Hydraulics en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2020-06-21
heal.bibliographicCitation Eugene Retsinis and Panayiotis Papanicolaou, (2020). Numerical and Experimental Study of Classical Hydraulic Jump, Water, Special Issue: Shallow Water Equations in Hydraulics: Modeling, Numerics and Applications, MDPI, Vol. 12, Issue 6, 1766, June 2020, pp. 1-16 de
heal.abstract The present work is an e ort to simulate numerically a classical hydraulic jump in a horizontal open channel with a rectangular cross-section, as far as the jump location and free surface elevation is concerned, and compare the results to experiments with Froude numbers in the range 2.44 to 5.38. The governing equations describing the unsteady one-dimensional rapidly varied flow have been solved with the assumption of non-hydrostatic pressure distribution. Two finite di erence schemes were used for the discretization of the mass and momentum conservation equations, along with the appropriate initial and boundary conditions. The method of specified intervals has been employed for the calculation of the velocity at the downstream boundary node. Artificial viscosity was required for damping the oscillations near the steep gradients of the jump. An iterative algorithm was used to minimize the di erence of flow depth between two successive iterations that must be less than a threshold value, for achieving steady state solution. The time interval varied in each iteration as a function of the Courant number for stability reasons. Comparison of the numerical results with experiments showed the validity of the computations. The numerical codes have been implemented in house using a Matlab® environment. en
heal.publisher MDPI en
heal.journalName Water en
heal.journalType peer-reviewed
heal.fullTextAvailability false
dc.identifier.doi https://doi.org/10.3390/w12061766 el


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα