HEAL DSpace

Investigation of reinforcement learning for optimal part dispatching by drones in flexible manufacturing systems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Αγγελίδου, Χαρίκλεια el
dc.contributor.author Angelidou, Charikleia en
dc.date.accessioned 2022-09-27T09:23:15Z
dc.date.available 2022-09-27T09:23:15Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/55769
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.23467
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject Reinforcement learning en
dc.subject Flexible manufacturing en
dc.subject Drones en
dc.subject Dispatching en
dc.subject Ενισχυτική μάθηση el
dc.subject Discrete events en
dc.subject Διακριτά γεγονότα el
dc.subject Ανάθεση καθηκόντων el
dc.subject Ευέλικτη παραγωγή el
dc.title Investigation of reinforcement learning for optimal part dispatching by drones in flexible manufacturing systems en
heal.type masterThesis
heal.classification Mechanical Engineering en
heal.classification Reinforcement Learning en
heal.classification Manufacturing Engineering en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2022-04-07
heal.abstract The industrial environment of the past years has been characterized by the high rate of changes, pushing the industry to implement innovative technologies to satisfy the market needs. It is of high priority to modify existing production systems in order to adopt to the new era and optimize product control. Industry 4.0, the conjunction of Information Technology with well-established means of mass production, is gaining ground each passing day. Detailed simulations simplify the analysis processes and thus allow for a better understanding of the systems, while at the same time decreasing costs and leading to broad optimization possibilities. Unmanned aerial vehicles (UAVs) have also witnessed increasing use, as they provide flexibility and agility to the manufacturing processes, meeting the enhanced efficiency demands. The environmental impact and economic restraints pave the way towards on demand manufacturing, so that the transportation scheme is also transforming to an efficient dispatching network, where dynamic and stochastic environments are required. Quick response to customer orders and the ability to work over a disparate set of floor settings is of high priority. In this study, we address this problem of dispatching in manufacturing. A design to formulate the shop floor state as a virtual discrete events model using Reinforcement Learning (RL) is proposed. Machine processing times, transition times, queue warehouse condition and drone battery are incorporated in the RL state representation, while a reward function is defined in terms of production maximization. The influence of different model parameters and hyper parameter optimization on the quality and stability of the results obtained is analyzed. A well configured Proximal Policy Optimization (PPO) algorithm, that enables optimal part dispatching within the Flexible Manufacturing System is also discussed. The software package MATLAB SimEVents is used for modeling the manufacturing cell environment, interfaced with the MATLAB RL Toolbox for agent creation and training. The results obtained suggest a robust approach to optimizing part dispatching in production lines en
heal.advisorName Βοσνιάκος, Γεώργιος - Χριστόφορος el
heal.advisorName Vosniakos, George - Christopher en
heal.committeeMemberName Βοσνιάκος, Γεώργιος - Χριστόφορος el
heal.committeeMemberName Μπενάρδος, Πανώριος el
heal.committeeMemberName Τόλης, Αθανάσιος el
heal.committeeMemberName Vosniakos, George - Christopher en
heal.committeeMemberName Benardos, Panorios en
heal.committeeMemberName Tolis, Athanasios en
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Μηχανολόγων Μηχανικών el
heal.academicPublisherID ntua
heal.numberOfPages 99 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα