HEAL DSpace

Deep learning applications in anti-aging drug discovery

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Μπαλούγιας, Θεόδωρος el
dc.contributor.author Balougias, Theodoros en
dc.date.accessioned 2022-09-28T10:00:08Z
dc.date.available 2022-09-28T10:00:08Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/55800
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.23498
dc.rights Default License
dc.subject Deep Learning en
dc.subject Βαθειά μάθηση el
dc.subject Aging en
dc.subject Drug discovery en
dc.subject Systems biology en
dc.subject Statistics en
dc.subject Γήρανση el
dc.subject Ανακάλυψη φαρμάκων el
dc.subject Βιολογία συστημάτων el
dc.subject Στατιστική el
dc.title Deep learning applications in anti-aging drug discovery en
heal.type bachelorThesis
heal.classification Deep Learning in drug discovery en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2022-03-30
heal.abstract Aging is considered nowadays by the scientific community as a disease that needs to be treated. Cellular senescence is one of the key characteristics of aging, as it leads to the apoptosis of cells and their abnormal reproduction. It is therefore of value to identify drugs that combat the biological effects of cellular senescence in the human organism. In this direction, we developed a deep learning model which can predict the biological footprint of compounds given their chemical structure. In particular, the model learns and predicts a biological distance between a pair of compounds, as well as some biological pathways that are activated due to the perturbations caused by the compounds in specific cell lines. In addition, we are utilizing data from in-vitro senescence induction experiments to identify relations between the compounds used in these experiments and the ones from our web database with the goal of selecting those that most probably express senolytic activity and using them then as inputs to our model in order to screen for more similar compounds with such activity in other databases. en
heal.advisorName Αλεξόπουλος, Λεωνίδας el
heal.committeeMemberName Αλεξόπουλος, Λεωνίδας el
heal.committeeMemberName Σπιτάς, Βασίλειος el
heal.committeeMemberName Προβατίδης, Χριστόφορος el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Μηχανολόγων Μηχανικών. Τομέας Ρευστών. Εργαστήριο Βιορευστομηχανικής και Βιοϊατρικής Τεχνολογίας el
heal.academicPublisherID ntua
heal.numberOfPages 54 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής