dc.contributor.author | Λιάγγου, Θεοδώρα | el |
dc.contributor.author | Liangou, Theodora | en |
dc.date.accessioned | 2022-10-13T09:15:19Z | |
dc.date.available | 2022-10-13T09:15:19Z | |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/55912 | |
dc.identifier.uri | http://dx.doi.org/10.26240/heal.ntua.23610 | |
dc.description | Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Ναυτική και Θαλάσσια Τεχνολογία και Επιστήμη” | el |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ | * |
dc.subject | Optimal sensor placement | en |
dc.subject | Statistical Pattern recognition | en |
dc.subject | Detection Theory | en |
dc.subject | Genetic Algorithm | en |
dc.subject | Corrosion | en |
dc.subject | Βέλτιστη τοποθέτηση αισθητήρων | el |
dc.subject | Στατιστική αναγνώριση προτύπων | el |
dc.subject | Θεωρία ανίχνευσης | el |
dc.subject | Διάβρωση | el |
dc.subject | Γενετικός αλγόριθμος | el |
dc.title | Optimization of sensor network topology for Structural Health Monitoring applications | en |
heal.type | masterThesis | |
heal.classification | Structural Health Monitoring | en |
heal.language | en | |
heal.access | campus | |
heal.recordProvider | ntua | el |
heal.publicationDate | 2022-06-06 | |
heal.abstract | A Structural Health Monitoring (SHM) architecture involves the processing of sensor measurements and their translation to decisions about the structure’s condition. Given a specific SHM approach, the sensor topology, the feature selection, and the employed detector are the main elements that control the detection performance. The present thesis, first, provides an exploratory analysis of the statistical response patterns that govern a structure subjected to var-iable loads and then methodically arrives at an optimal sensor topology, that maximizes the detection performance. For demonstration purposes, a thin square plate subjected to probabilistically described loads is considered. The damage of interest corresponds to a uniform thickness loss, the detection of which is evaluated at different damage levels (from 1% to a 90% unrealistic upper bound). The damage is to be identified indirectly, through strain sensing. The problem is numerically approached (Finite Elements and Monte Carlo Simulations). The generalized Gaussian likelihood ratio test is employed for setting up the detector. The effect of the feature vector arrangement to the detection performance is assessed through estimations of the probability of detection and false alarm, under the Neyman-Pearson framework. The optimal feature vector has been derived through case-based informal (selective process) or formal (Genetic Algorithms) optimization. | en |
heal.advisorName | Ανυφαντής, Κωνσταντίνος | el |
heal.advisorName | Anyfantis, Konstantinos | el |
heal.committeeMemberName | Samouelides, Manolis | |
heal.committeeMemberName | Papalambrou, George | |
heal.academicPublisher | Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ναυπηγών Μηχανολόγων Μηχανικών | el |
heal.academicPublisherID | ntua | |
heal.numberOfPages | 78 p. | |
heal.fullTextAvailability | false |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: