HEAL DSpace

Reinforcement in Cooperative Games

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Μπαρδής, Κωνσταντίνος el
dc.contributor.author Bardis, Konstantinos en
dc.date.accessioned 2022-10-14T10:35:47Z
dc.date.available 2022-10-14T10:35:47Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/55942
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.23640
dc.description Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Επιστήμη Δεδομένων και Μηχανική Μάθηση" el
dc.rights Αναφορά Δημιουργού-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights Αναφορά Δημιουργού-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nd/3.0/gr/ *
dc.subject Πολλαπλοί Πράκτορες el
dc.subject Ενισχυτική Μάθηση el
dc.subject Βαθιά Μάθηση el
dc.subject Νευρωνικά Δίκτυα el
dc.subject Βιντεοπαιχνίδια el
dc.subject Multi-Agent en
dc.subject Reinforcement Learning en
dc.subject Deep Learning en
dc.subject Neural Networks en
dc.subject Videogames en
dc.title Reinforcement in Cooperative Games en
heal.type masterThesis
heal.secondaryTitle Deep Learning Approaches en
heal.classification Machine Learning en
heal.classification Reinforcement Learning el
heal.classification Deep Learning el
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2022-05-05
heal.abstract A Multi-Agent system is a system that necessitates the coordination and interaction between several decision-making entities (Agents) to accomplish a given task they otherwise would not be able to. There is a growing need for algorithms tailored to this setting, since modern systems are relying more and more on decentralized cooperation between several agents, which poses several additional challenges over the more well studied single-agent setting, like the non-stationarity induced by other agents’ decisions, which behooves some important modifications to existing algorithms or the development of dedicated approaches from the ground up. This diploma thesis aims to first study the modern literature on MARL, explain the challenges and opportunities it affords, and then to utilize several of these algorithms in multi-agent settings using the libraries PettingZoo and RLLib in cooperative settings. en
heal.advisorName Κόλλιας, Στέφανος
heal.committeeMemberName Κόλλιας, Στέφανος
heal.committeeMemberName Σταφυλοπάτης, Ανδρέας-Γεώργιος
heal.committeeMemberName Στάμου, Γιώργος
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών el
heal.academicPublisherID ntua
heal.numberOfPages 69
heal.fullTextAvailability false


Files in this item

The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record

Αναφορά Δημιουργού-Όχι Παράγωγα Έργα 3.0 Ελλάδα Except where otherwise noted, this item's license is described as Αναφορά Δημιουργού-Όχι Παράγωγα Έργα 3.0 Ελλάδα