dc.contributor.author | Μπαρδής, Κωνσταντίνος | el |
dc.contributor.author | Bardis, Konstantinos | en |
dc.date.accessioned | 2022-10-14T10:35:47Z | |
dc.date.available | 2022-10-14T10:35:47Z | |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/55942 | |
dc.identifier.uri | http://dx.doi.org/10.26240/heal.ntua.23640 | |
dc.description | Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Επιστήμη Δεδομένων και Μηχανική Μάθηση" | el |
dc.rights | Αναφορά Δημιουργού-Όχι Παράγωγα Έργα 3.0 Ελλάδα | * |
dc.rights | Αναφορά Δημιουργού-Όχι Παράγωγα Έργα 3.0 Ελλάδα | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nd/3.0/gr/ | * |
dc.subject | Πολλαπλοί Πράκτορες | el |
dc.subject | Ενισχυτική Μάθηση | el |
dc.subject | Βαθιά Μάθηση | el |
dc.subject | Νευρωνικά Δίκτυα | el |
dc.subject | Βιντεοπαιχνίδια | el |
dc.subject | Multi-Agent | en |
dc.subject | Reinforcement Learning | en |
dc.subject | Deep Learning | en |
dc.subject | Neural Networks | en |
dc.subject | Videogames | en |
dc.title | Reinforcement in Cooperative Games | en |
heal.type | masterThesis | |
heal.secondaryTitle | Deep Learning Approaches | en |
heal.classification | Machine Learning | en |
heal.classification | Reinforcement Learning | el |
heal.classification | Deep Learning | el |
heal.language | en | |
heal.access | free | |
heal.recordProvider | ntua | el |
heal.publicationDate | 2022-05-05 | |
heal.abstract | A Multi-Agent system is a system that necessitates the coordination and interaction between several decision-making entities (Agents) to accomplish a given task they otherwise would not be able to. There is a growing need for algorithms tailored to this setting, since modern systems are relying more and more on decentralized cooperation between several agents, which poses several additional challenges over the more well studied single-agent setting, like the non-stationarity induced by other agents’ decisions, which behooves some important modifications to existing algorithms or the development of dedicated approaches from the ground up. This diploma thesis aims to first study the modern literature on MARL, explain the challenges and opportunities it affords, and then to utilize several of these algorithms in multi-agent settings using the libraries PettingZoo and RLLib in cooperative settings. | en |
heal.advisorName | Κόλλιας, Στέφανος | |
heal.committeeMemberName | Κόλλιας, Στέφανος | |
heal.committeeMemberName | Σταφυλοπάτης, Ανδρέας-Γεώργιος | |
heal.committeeMemberName | Στάμου, Γιώργος | |
heal.academicPublisher | Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών | el |
heal.academicPublisherID | ntua | |
heal.numberOfPages | 69 | |
heal.fullTextAvailability | false |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: