Non-linear analysis of steel structures using stochastic processes

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Λίταινας, Γεώργιος el
dc.contributor.author Litainas, Georgios en
dc.date.accessioned 2022-10-24T08:07:37Z
dc.date.available 2022-10-24T08:07:37Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/55975
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.23673
dc.description Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Δομοστατικός Σχεδιασμός και Ανάλυση των Κατασκευών” el
dc.rights Default License
dc.subject Λυγισμός el
dc.subject Πιθανότητες el
dc.subject Μη-γραμμική ανάλυση el
dc.subject Αβεβαιότητα el
dc.subject Στοχαστικά πεδία el
dc.subject Buckling en
dc.subject Probability en
dc.subject Non-linear analysis en
dc.subject Uncertainty en
dc.subject Stochastic fields en
dc.title Non-linear analysis of steel structures using stochastic processes en
heal.type masterThesis
heal.secondaryTitle Μη-γραμμική ανάλυση μεταλλικών κατασκευών με χρήση στοχαστικών διεργασιών el
heal.classification Στοχαστική ανάλυση el
heal.classification Μεταλλικές κατασκευές el
heal.language en
heal.access campus
heal.recordProvider ntua el
heal.publicationDate 2022-06-29
heal.abstract Uncertainty quantification and methods used to measure the incertitude of the systems/structures have been upgraded in the last decades and as a result, many more engineers take it into account for the analysis and design. With the view to including all the uncertainty factors that can cause damage to structures, without being con- sidered into deterministic solutions, stochastic methods have been developed over the years. As a matter of fact, the Monte-Carlo simulation is the most well-known technique in the field of stochastic analysis. Nonetheless, this method needs a large number of random samples and as a consequence the computational cost can be rather high. This thesis presents the application of the Monte-Carlo simulation for exacting useful information so as to find the distribution of inelastic/elastic buckling load of the structures/systems respectively. The first application is the Mindlin-Reissner plate in which, the Monte-Carlo simulation is applied in order to create the distribution of the buckling load of the system considering two stochastic fields not only for the Young’s modulus but also thickness. In addition, further investigation is made for four different boundary conditions of the steel plate by plotting the different distributions together. In the second and last application, the Monte-Carlo simulation is applied on a 2D and 3D structure respectively so as to exact the distribution of the max base shear and top displacement considering material and geometric nonlinearity. en
heal.advisorName Γαντές, Χαράλαμπος el
heal.advisorName Παπαδόπουλος, Βησσαρίων el
heal.committeeMemberName Γαντές, Χαράλαμπος el
heal.committeeMemberName Παπαδόπουλος, Βησσαρίων el
heal.committeeMemberName Βαμβάτσικος, Δημήτρης el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Πολιτικών Μηχανικών el
heal.academicPublisherID ntua
heal.numberOfPages 85 σ. el
heal.fullTextAvailability false
heal.fullTextAvailability false

Files in this item

This item appears in the following Collection(s)

Show simple item record