dc.contributor.author | Ντε Πιαν, Μαρία Ελένη | el |
dc.contributor.author | Nte Pian, Maria-Eleni | en |
dc.date.accessioned | 2022-10-25T09:51:52Z | |
dc.date.available | 2022-10-25T09:51:52Z | |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/55994 | |
dc.identifier.uri | http://dx.doi.org/10.26240/heal.ntua.23692 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ | * |
dc.subject | Ορθοκανονικά προβολικό | el |
dc.subject | Μη αρνητική παραγοντοποίηση πίνακα | el |
dc.subject | Διαχρονικά μοτίβα | el |
dc.subject | Νευροαπεικόνιση | el |
dc.subject | Γήρανση | el |
dc.subject | Semi-orthogonally projective | en |
dc.subject | Non-negative matrix factorization | el |
dc.subject | Longitudinal patterns | el |
dc.subject | Neuroimaging | el |
dc.subject | Aging | el |
dc.title | Detecting patterns of coordinated brain change over time via orthogonally projective non-negative matrix factorization and structural covariance analysis | en |
dc.title | Ανίχνευση προτύπων συντονισμένης εγκεφαλικής αλλαγής στο πέρασμα του χρόνου μέσω ορθογωνικά προβολικής μη-αρνητικής παραγοντοποίησης πίνακα και ανάλυση ανατομικής συνδιακύμανσης | el |
dc.contributor.department | Εργαστήριο Βιοϊατρικών Προσομοιώσεων και Απεικονιστικής Τεχνολογίας | el |
heal.type | bachelorThesis | |
heal.classification | Νευροαπεικόνιση | el |
heal.classification | Αναγνώριση Προτύπων | el |
heal.language | el | |
heal.language | en | |
heal.access | free | |
heal.recordProvider | ntua | el |
heal.publicationDate | 2022-06-29 | |
heal.abstract | Large-scale longitudinal brain imaging studies provide unprecedented opportunities for understanding disease processes and developing early diagnostic and predictive biomarkers. However, commonly used techniques, such as voxel-based analyses, are frequently mass univariate, and fail to capture patterns of subtle, yet coordinated brain change over time, which might result from an underlying neuropathologic process. Orthogonally projective non-negative matrix factorization (opNMF) has previously shown great potential as a data-driven, interpretable dimensionality reduction and parts-based decomposition method. Its use in longitudinal studies has not yet extensively explored. Importantly, direct application of NMF methods to images that contain both positive and negative parts, is not straightforward. Brain changes can be such signals (e.g. simultaneous decrease of gray or white matter regional volumes and increase in white matter hyperintensities of CSF). Here, we propose a semi variant of opNMF (semi-opNMF) and a modification of the input for the original opNMF that fill in this methodological gap, in the context of mapping longitudinal brain change. Both the semi-opNMF model and the modified standard opNMF learn and extract parts-based representation that is driven by age-related longitudinal patterns of structural covariance (LPSCs) in data, under the hypothesis that such patterns might reflect evolving neuropathological processes that affect brain regions simultaneously. We have empirically proven that the semi-opNMF model can quickly converge to a global or local optimum and obtain high sparsity for clinical interpretability. The extracted LPSCs were highly correlated with various clinical measures in ADNI and BLSA. Additionally, LPSCs had comparable predictive power with some of the state-of-the-art biomarkers of MCI and AD available and they had higher power in classifying progressive MCI and static MCI patients than other widely used extracted regions. The proposed model shows great potential in longitudinal analysis with mixed-sign signals and promotes clinical interpretability. | en |
heal.abstract | Οι μεγάλης κλίμακας διαχρονικές μελέτες απεικόνισης του εγκεφάλου παρέχουν πρωτοφανείς ευκαιρίες για την κατανόηση των διαδικασιών της νόσου και την ανάπτυξη πρώιμων διαγνωστικών και προγνωστικών βιοδεικτών. Ωστόσο, οι διαδεδομένες τεχνικές, όπως οι αναλύσεις με βάση τα voxel, είναι συχνά μαζικές μονομεταβλητές και αποτυγχάνουν να συλλάβουν μοτίβα ανεπαίσθητων, αλλά συντονισμένων εγκεφαλικών αλλαγών που συμβαίνουν με την πάροδο του χρόνου, που συχνά είναι αποτέλεσμα μιας υποκείμενης νευροπαθολογικής διαδικασίας. Η ορθογωνικά προβολική παραγοντοποίηση μη αρνητικών πινάκων (opNMF) έχει προηγουμένως δείξει μεγάλες δυνατότητες ως μια μη επιβλεπόμενη, ερμηνεύσιμη μέθοδος μείωσης της διαστατικότητας και τμηματικής αποσύνθεσης. Η χρήση της σε διαχρονικές μελέτες δεν έχει ακόμη διερευνηθεί εκτενώς. Είναι σημαντικό να αναφερθεί, ότι η άμεση εφαρμογή των μεθόδων NMF σε εικόνες που περιέχουν τόσο θετικά όσο και αρνητικά μέρη, δεν είναι απλή. Οι αλλαγές στον εγκέφαλο μπορεί να είναι τέτοια σήματα (π.χ. ταυτόχρονη μείωση των περιφερειακών όγκων της φαιάς ή της λευκής ουσίας και αύξηση των υπερπυκνώσεων της λευκής ουσίας του ΕΝΥ). Εδώ, προτείνουμε μια ημιπαραλλαγή της opNMF (semi-opNMF) και μια τροποποίηση της εισόδου για την κλασική opNMF μέθοδο που καλύπτουν αυτό το μεθοδολογικό κενό, στο πλαίσιο της χαρτογράφησης διαχρονικών εγκεφαλικών αλλαγών. Τόσο το μοντέλο semi-opNMF όσο και το τροποποιημένο κλασικό opNMF μαθαίνουν και εξάγουν τμηματικές αναπαραστάσεις καθοδηγούμενες από τα ηλικιακά διαχρονικά μοτίβα δομικής συνδιακύμανσης (LPSC) στα δεδομένα, υπό την υπόθεση ότι τα εν λόγω μοτίβα μπορεί να αντανακλούν εξελισσόμενες νευροπαθολογικές διεργασίες που επηρεάζουν ταυτόχρονα τις περιοχές του εγκεφάλου. Έχουμε αποδείξει εμπειρικά ότι το μοντέλο semi-opNMF μπορεί να συγκλίνει γρήγορα σε ένα ολικό ή τοπικό βέλτιστο και να αποκτήσει υψηλή αραιότητα για κλινική ερμηνευσιμότητα. Τα εξαγόμενα LPSCs συσχετίστηκαν σε μεγάλο βαθμό με διάφορα κλινικές μεταβλητές στην ADNI και την BLSA. Επιπλέον, οι LPSCs είχαν συγκρίσιμη προγνωστική ισχύ με ορισμένους από τους διαθέσιμους βιοδείκτες MCI και AD τελευταίας τεχνολογίας και είχαν μεγαλύτερη ισχύ στην ταξινόμηση ασθενών με προοδευτική MCI και σταθερή MCI από ό,τι άλλες ευρέως χρησιμοποιούμενες εξαγόμενες περιοχές. Το προτεινόμενο μοντέλο παρουσιάζει μεγάλες δυνατότητες στη διαχρονική ανάλυση με σήματα μικτού προσήμου και προάγει την κλινική ερμηνευσιμότητα. | el |
heal.advisorName | Νικήτα, Κωνσταντίνα | el |
heal.committeeMemberName | Σταφυλοπάτης, Ανδρέας-Γεώργιος | el |
heal.committeeMemberName | Στάμου, Γεώργιος | el |
heal.committeeMemberName | Νικήτα, Κωνσταντίνα | el |
heal.academicPublisher | Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών | el |
heal.academicPublisherID | ntua | |
heal.numberOfPages | 217 σ. | |
heal.fullTextAvailability | false |
The following license files are associated with this item: