HEAL DSpace

Predicting the future performance of soccer players

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Gkiastas, Vangelis en
dc.contributor.author Γκιάστας Ευάγγελος el
dc.date.accessioned 2022-11-10T09:48:29Z
dc.date.available 2022-11-10T09:48:29Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/56115
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.23813
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject Sports analytics en
dc.subject Machine learning en
dc.subject Deep learning en
dc.subject Time series en
dc.subject Data mining en
dc.subject Αθλητικές αναλύσεις el
dc.subject Εξόρυξη δεδομένων el
dc.subject Μηχανική μάθηση el
dc.subject Βαθιά μάθηση el
dc.subject Πρόβλεψη χρονοσειρών el
dc.title Predicting the future performance of soccer players en
heal.type masterThesis
heal.classification Machine learning en
heal.classification Computer Science en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2022-09-02
heal.abstract Soccer is one of the most widespread and popular sports on the planet and the increasing amount and utilization of data in all aspects of life, could not leave, of course, this field unaffected. The area of sports analytics has attracted a lot of interest in recent years, with applications that affect many aspects of the game. While match outcome predictions, injury preventions, team tactics improvement and betting odds estimations have been widely investigated with different data-driven approaches, future player performance prediction is quite unexplored issue. A perspective of how the athlete's performance will develop in the near or distant future can significantly impact both the athlete and the team on a variety of different levels. This thesis focuses particularly on this issue and is divided in three parts. Firstly, a real-world dataset of elite soccer player games is collected and created, containing individual and team attributes, as well as pre game and other information related to performance. Secondly, it is investigated which variables appear to be more highly associated with the prediction of player's rating in a future game. Finally, the third contribution of this thesis is the forecasting of individual performance in specific future games. Various statistical, machine learning and deep learning models are applied to multivariate time series data with success, producing much better results compared to those of random and naive predictors. en
heal.advisorName Karlis, Dimitris en
heal.committeeMemberName Ntzoufras, Ioannis en
heal.committeeMemberName Fouskakis, Dimitris en
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών el
heal.academicPublisherID ntua
heal.numberOfPages 90 σ. en
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα