dc.contributor.author |
Σεισόπουλος, Ιωάννης-Κωνσταντίνος
|
el |
dc.contributor.author |
Seisopoulos, Ioannis-Konstantinos
|
en |
dc.date.accessioned |
2022-11-14T08:49:25Z |
|
dc.date.available |
2022-11-14T08:49:25Z |
|
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/56122 |
|
dc.identifier.uri |
http://dx.doi.org/10.26240/heal.ntua.23820 |
|
dc.rights |
Default License |
|
dc.subject |
Μηχανική Μάθηση (ML) |
el |
dc.subject |
Βαθιά Μάθηση (DL) |
el |
dc.subject |
Πρόβλεψη Χρονοσειρών |
el |
dc.subject |
Έξυπνα Δίκτυα |
el |
dc.subject |
Πρόβλεψη Φορτίου Βραχυπρόθεσμου Χρόνου (STLF) |
el |
dc.subject |
N-Beats |
en |
dc.subject |
LightGBM |
en |
dc.subject |
Χρονικά Συνελικτικά Δίκτυα (TCN) |
el |
dc.subject |
Νευρωνικά Δίκτυα |
el |
dc.subject |
Ensemble |
en |
dc.title |
Τεχνικές μηχανικής και βαθιάς μάθησης για βραχυπρόθεσμη
πρόβλεψη ζήτησης ηλεκτρικής ενέργειας:
μια συγκριτική ανάλυση σε χρονοσειρές Ευρωπαϊκών
διαχειριστών συστημάτων μεταφοράς |
el |
heal.type |
bachelorThesis |
|
heal.classification |
Νευρωνικά Δίκτυα |
el |
heal.language |
el |
|
heal.access |
free |
|
heal.recordProvider |
ntua |
el |
heal.publicationDate |
2022-07-09 |
|
heal.abstract |
Electrical short-term load forecasting (STLF) has emerged as one of the most essential fields
of research for efficient and reliable operation of power systems in the last few decades. It plays a
very significant role in the field of scheduling, contingency analysis, load flow analysis, planning
and maintenance of power systems, let alone in the participation of energy companies in the energy
markets. Especially with the advent of smart grids, the need for fairly precise and highly reliable
estimation of electricity load is greater than ever. Moreover, the aforementioned task (STLF) has
become nowadays more popular for European countries as the energy crisis has reached an
unprecedented peak with geopolitical extensions. Machine learning methods are well adapted to the
nature of the electrical load, as they can model complicated nonlinear connections in Time Series
Forecasting through a learning process containing historical data patterns. The presented Thesis
conducts a comparative study of state-of-the-art Machine Learning (ML) and Deep Learning (DL)
techniques, namely Light Gradient Boosting Machine (LightGBM), Neural Basis Expansion
Analysis for Time Series forecasting (N-Beats) and Temporal Convolutional Networks (TCN), while
investigating the effect of various external variables in the process. Four categories of features,
historical loads, temporal covariates, energy price and weather factors, are considered and utilized
leveraging various encoding mechanisms. In the experimental studies, hourly-resolution load
datasets from Portugal, Spain and Greece and the corresponding prices of load records, as well as the
provincial weather data from Portugal are utilized, trying to effectively forecast the day-ahead load.
Finally, a hybrid model is proposed, combining Machine (ML) and Deep Learning (DL) models,
applying an Ensemble method. |
en |
heal.advisorName |
Ψαρράς, Ιωάννης |
el |
heal.committeeMemberName |
Ψαρράς, Ιωάννης |
el |
heal.committeeMemberName |
Ασκούνης, Δημήτριος |
el |
heal.committeeMemberName |
Δούκας, Χρυσόστομος (Χάρης) |
el |
heal.academicPublisher |
Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Ηλεκτρικών Βιομηχανικών Διατάξεων και Συστημάτων Αποφάσεων |
el |
heal.academicPublisherID |
ntua |
|
heal.numberOfPages |
71 σ. |
el |
heal.fullTextAvailability |
false |
|