HEAL DSpace

Τρισδιάστατη ανάλυση και αριθμητική προσομοίωση διαδιδόμενων ρωγμών στη διεπιφάνεια επίστρωσης – υποστρώματος δίσκων τριβής

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Κεχρή, Μαρία el
dc.contributor.author Kechri, Maria en
dc.date.accessioned 2022-11-30T11:00:46Z
dc.date.available 2022-11-30T11:00:46Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/56314
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.24012
dc.rights Default License
dc.subject Συμπλέκτης ξηράς τριβής el
dc.subject Dry friction clutch en
dc.subject Διεπιφανειακή ρωγμή el
dc.subject Ρωγμή σύνθετου τρόπου παραμόρφωσης el
dc.subject Μοντέλο πεπερασμένων στοιχείων el
dc.subject Interface crack en
dc.subject Mixed mode crack en
dc.subject Finite element model en
dc.title Τρισδιάστατη ανάλυση και αριθμητική προσομοίωση διαδιδόμενων ρωγμών στη διεπιφάνεια επίστρωσης – υποστρώματος δίσκων τριβής el
dc.title Three-dimensional analysis and numerical simulation of propagating cracks at the coating – substrate interface of friction discs en
heal.type bachelorThesis
heal.classification Solid Mechanics en
heal.language el
heal.access campus
heal.recordProvider ntua el
heal.publicationDate 2022-07-20
heal.abstract Οι δίσκοι τριβής συμπλεκτών ξηράς τριβής παρουσιάζουν πολλά πλεονεκτήματα, είναι, όμως, πολύ ευάλωτοι στην φθορά, λόγω της ανάπτυξης εξαιρετικά υψηλών θερμοκρασιών, οι οποίες οφείλονται στις αναπτυσσόμενες δυνάμεις τριβής και στην απουσία λιπαντικού. Ιδιαίτερα χαμηλή αντοχή χαρακτηρίζει την διεπιφάνεια μεταξύ του δίσκου του συμπλέκτη και του υλικού τριβής του. Στόχος της εργασία αυτής είναι η μελέτη της ανάπτυξης ρωγμών στην προαναφερθείσα διεπιφάνεια. Οι εξισώσεις δομούνται και επιλύονται σε 3Δ κυλινδρικό σύστημα συντεταγμένων, κατάλληλο για την ακριβέστερη αναπαράσταση της γεωμετρίας. Αρχικά, παρουσιάζονται οι γενικευμένες εξισώσεις του προβλήματος Ελαστικότητας, και στην συνέχεια, αφού παρατεθούν οι βασικές θεωρητικές γνώσεις για την κατανόηση του κλάδου της Θραυστομηχανικής και εισαχθούν οι έννοιες των κυρίων παράμετροι θραύσης, περιγράφονται οι αρχές των διεπιφανειακών ρωγμών. Άμεση είναι η μοντελοποίηση του σύνθετου τρόπου παραμόρφωσης των ρωγμών, με βάση την επαλληλία των τριών ανεξάρτητων τρόπων παραμόρφωσης, αλλά προσοχή πρέπει να δοθεί στο χρησιμοποιούμενο κριτήριο θραύσης και στην μοντελοποίηση της κοπωτικής τους συμπεριφοράς. Οι μαθηματικές εξισώσεις της ελαστικότητας, διακριτοποιούνται στη συνέχεια με τη μέθοδο των πεπερασμένων στοιχείων. Ειδικά για την μελέτη προβλημάτων ρωγμών εισάγονται ειδικά τροποποιημένα ισοπαραμετρικά στοιχεία, τα οποία περικυκλώνουν το μέτωπο της ρωγμής. Η διεπιφάνεια συμπεριλαμβάνεται στον κώδικα μέσω της κινηματικής ταυτοσημότητας των κοινών κόμβων του επιστρώματος και της επίστρωσης που ανήκουν σε αυτήν. Σε πρώτο στάδιο γίνεται εξακρίβωση του κώδικα ελαστικότητας για τις περιπτώσεις του ιδανικού εφελκυσμού μιας ορθογωνικής, και της στρέψης μιας κυλινδρικής δοκού, οπότε τα αποτελέσματα συγκρίνονται με την αναλυτική λύση και τη λύση του ANSYS. Στη συνέχεια μελετώνται οι λύσεις για τα προβλήματα ρωγμών σε Mode-I, II, και ΙΙΙ, και συγκρίνονται με τις λύσεις του ANSYS, τόσο για τα πεδία της ελαστικότητας, όσο και για τους συντελεστές εντάσεως τάσεων. Τέλος, παρουσιάζονται οι λύσεις για τη διεπιφανειακή ρωγμή ενός δίσκου τριβής, και δίνεται μια παραμετρική μελέτη σχετικά με τα χρησιμοποιούμενα υλικά. el
heal.abstract Dry clutch discs have many advantages. However, they are prone to wear, due to excessively high temperatures, developed from friction forces and the absence of hydrodynamic lubrication. The interface between the main part of the clutch disc and its friction material has particularly poor wear resistance properties, due to the lower toughness of the biomaterial bond. The aim of this work is to investigate the growth of cracks lying upon this interface, under the common loadings of a clutch disc. The equations are structured and solved in a 3D cylindrical coordinate system, suitable for the more accurate representation of the geometry. Initially, the generalized equations of Elasticity are presented, and, after the theoretical background needed to understand the field of Fracture Mechanics and the concepts of the main fracture parameters are introduced, the principles of interface cracks are described. Modeling mixed mode cracks is based on the straightforward superposition of the three independent deformation modes, but attention must be paid to the fracture criterion used and to the modeling of their fatigue behavior. The mathematical equations of elasticity are then discretized using the finite element method. Especially for the study of crack problems, specially modified isoparametric elements, surrounding the crack front, are introduced. The interface is included in the code through the kinematic coupling of the connected substrate and coating nodes, that lie upon the interface. As a first step, the elasticity code is verified for the cases of idealized tension of a rectangular and torsion of a cylindrical beam, and the results are compared with the analytical solution and the ANSYS solution. Following, the solutions for Mode-I, II, and III crack problems are studied, and compared with the ANSYS solutions, both for the elastic fields and the stress intensity factors. Finally, the solutions for the interface crack of a friction disc are presented, and a parametric study is made regarding the materials used on the substrate and the coating. en
heal.advisorName Σπιτάς, Βασίλειος el
heal.committeeMemberName Σπιτάς, Βασίλειος el
heal.committeeMemberName Προβατίδης, Χριστόφορος el
heal.committeeMemberName Αντωνιάδης, Ιωάννης el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Μηχανολόγων Μηχανικών. Τομέας Μηχανολογικών Κατασκευών και Αυτομάτου Ελέγχου. Εργαστήριο Στοιχείων Μηχανών el
heal.academicPublisherID ntua
heal.numberOfPages 145 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής