HEAL DSpace

Prediction of peak cylinder pressure of a four-stroke marine diesel engine using neural networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Γαλλιάκης, Ιάκωβος el
dc.contributor.author Galliakis, Iakovos en
dc.date.accessioned 2022-12-12T10:06:26Z
dc.date.available 2022-12-12T10:06:26Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/56421
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.24119
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject Μηχανική Μάθηση el
dc.subject Νευρωνικά Δίκτυα el
dc.subject Πρόβλεψη Πίεσης el
dc.subject Μέγιστη Πίεση Κυλίνδρου el
dc.subject Machine Learning en
dc.subject Neural Networks en
dc.subject Diesel Engine en
dc.subject Κινητήρας Ντήζελ el
dc.subject Pressure Prediction en
dc.subject Peak Cylinder Pressure el
dc.title Prediction of peak cylinder pressure of a four-stroke marine diesel engine using neural networks en
dc.title Πρόβλεψη μέγιστης πίεσης κυλίνδρου ενός τετράχρονου ναυτικού κινητήρα Diesel με χρήση νευρωνικών δικτύων el
heal.type bachelorThesis
heal.classification Machine Learning en
heal.classification Μηχανική Μάθηση el
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2022-03-11
heal.abstract In recent years, the demand for more efficient operation of engines has lead to an increase in the need for inexpensive and reliable monitoring tools. One parameter that is of great importance to the work producing process of an internal combustion engine is the in-cylinder pressure. The most common method for measuring such a parameter is through a piezoelectric pressure sensor; this solution however is quite expensive and the installation impractical and time-consuming. Others, more complex indirect methods include prediction of the pressure waveforms via utilisation of the acoustic emissions of the engine, or through the momentary crankshaft speed. A different approach to this task is explored through this thesis; the utilization of artificial neural networks, a machine learning model, that by processing easy to acquire data, namely the engine Speed, Torque, Lambda and Specific Fuel Consumption (BSFC), aims to make accurate predictions of the peak cylinder pressure. By using datasets from two different engines, both however being of the four-stroke, diesel type, two model groups were created; each grouped housed a large amount of different neural network architectures, in order to deduce the best hyperparameters for this task. After training and testing, it was concluded that the models were successful in predicting the peak pressure, as accuracy of 99.32% and 97.04% was reached by Model Set A and Set B respectively; it was also discovered that using the BSFC parameter as input worsened the performance of the models, leaving the engine Speed-Torque-Lambda as the optimal input vector. All the calculations and model building utilized the Julia programming language, and specifically the Flux machine learning package. en
heal.advisorName Papalambrou, George en
heal.committeeMemberName Kaiktsis, Lambros en
heal.committeeMemberName Grigoropoulos, Gregory en
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ναυπηγών Μηχανολόγων Μηχανικών. Τομέας Ναυτικής Μηχανολογίας el
heal.academicPublisherID ntua
heal.numberOfPages 115 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα