HEAL DSpace

Semantic Segmentation with Deep Convolutional Neural Networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Αλεξανδρόπουλος, Σταμάτης el
dc.contributor.author Alexandropoulos, Stamatis en
dc.date.accessioned 2023-01-11T07:14:43Z
dc.date.available 2023-01-11T07:14:43Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/56577
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.24275
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject Computer Vision en
dc.subject Semantic Segmentation en
dc.subject Deep Convolutional Neural Networks en
dc.subject Autonomous Driving en
dc.subject Offset Vectors en
dc.subject Όραση Υπολογιστών el
dc.subject Σημασιολογική Κατάτμηση el
dc.subject Βαθιά Συνελικτικά Νευρωνικά Δίκτυα el
dc.subject Αυτόνομη Οδήγηση el
dc.subject Διανύσματα Μετατόπισης el
dc.title Semantic Segmentation with Deep Convolutional Neural Networks en
dc.contributor.department ΕΡΓΑΣΤΗΡΙΟ ΟΡΑΣΗΣ ΥΠΟΛΟΓΙΣΤΩΝ, ΕΠΙΚΟΙΝΩΝΙΑΣ ΛΟΓΟΥ ΚΑΙ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ el
heal.type bachelorThesis
heal.classification Computer Vision en
heal.language el
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2022-10-10
heal.abstract Semantic segmentation is one of the fundamental topics of computer vision. Specifically, it is the process of assigning a category to each pixel in an image. There are a number of applications in a variety of fields, such as Autonomous Driving, Robotics, and Medical Image Processing, where pixel-level labeling is critical. Deep Convolutional Neural Networks (DCNNs) have lately demonstrated state-of-the-art performance in high-level recognition tasks. As a result, such models may now be used in the above-mentioned cutting-edge applications. Most of the related works concentrate on architectural changes to the used networks in order to better combine global context aggregation with local detail preservation, and utilize a simple loss computed on individual pixels. Designing more complex losses that account for the structure contained in semantic labelings has gotten substantially less attention. The goal of this thesis is to investigate such priors for semantic segmentation and to use them in the supervision of state-of-the-art networks to get results that better reflect the regularity of genuine segmentations. Based on knowledge about the high regularity of real scenes, we propose a method for improving class predictions by learning to selectively exploit information from coplanar pixels. In particular, we introduce a prior which claims that for each pixel, there is a seed pixel which shares the same prediction with the former. As a result of this, we design a network with two heads. The first head generates pixel-level classes, whereas the second generates a dense offset vector field that identifies seed pixel positions. Seed pixels’ class predictions are then utilized to predict classes at each point. To account for possible deviations from precise local planarity, the resultant prediction is adaptively fused with the initial prediction from the first head using a learnt confidence map. The entire architecture is implemented on HRNetV2, a state-of-the-art model on Cityscapes dataset. The offset vector-based HRNetV2 was trained on both Cityscapes and ACDC datasets. We assess our method through extensive qualitative and quantitative experiments and ablation studies and compare it with recent state-of-the-art methods demonstrating its superiority and advantages. To sum up, we achieve better results than the initial model. en
heal.advisorName Μαραγκός, Πέτρος el
heal.advisorName Σακαρίδης, Χρήστος el
heal.committeeMemberName Ποταμιάνος, Γεράσιμος el
heal.committeeMemberName Μαραγκός, Πέτρος el
heal.committeeMemberName Ροντογιάννης, Αθανάσιος el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών el
heal.academicPublisherID ntua
heal.numberOfPages 121 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα