dc.contributor.author | Παπαγεωργίου, Παντελής-Παναγιώτης | el |
dc.contributor.author | Papageorgiou, Pantelis-Panagiotis | en |
dc.date.accessioned | 2023-01-18T12:21:36Z | |
dc.date.available | 2023-01-18T12:21:36Z | |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/56759 | |
dc.identifier.uri | http://dx.doi.org/10.26240/heal.ntua.24457 | |
dc.description | Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Ναυτική και Θαλάσσια Τεχνολογία και Επιστήμη” | el |
dc.rights | Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 3.0 Ελλάδα | * |
dc.rights | Αναφορά Δημιουργού - Παρόμοια Διανομή 3.0 Ελλάδα | * |
dc.rights.uri | http://creativecommons.org/licenses/by-sa/3.0/gr/ | * |
dc.subject | Vibration Signal Analysis | en |
dc.subject | Convolution Neural Network | en |
dc.subject | Machine Learning | en |
dc.subject | Prognostic | en |
dc.subject | Diagnostic | en |
dc.subject | Προγνωστική | el |
dc.subject | Διαγνωστική | el |
dc.subject | Μηχανική Μάθηση | el |
dc.subject | Ανάλυση Ταλαντώσεων | el |
dc.subject | Τεχνητή Νοημοσύνη | el |
dc.title | Using Convolutional Neural Network (CNN) to learn by sensor signal classification critical local areas in a physical flexible shaft rotor system as an example of a complicated mechanical system. | el |
heal.type | masterThesis | |
heal.classification | Prognostic & Diagnostic of complex mechanical systems | en |
heal.language | en | |
heal.access | free | |
heal.recordProvider | ntua | el |
heal.publicationDate | 2022-07-12 | |
heal.abstract | Complex machinery contains critical areas, such as revolute joints and bearings, that are prone to damage initiation and growth. If not detected early, damage in complex local areas leads to premature failure. The complexity of an integrated system is a factor that limits developed classical methods from detecting early damage in complex local areas. A pure experimental data environment could provide solutions given the broad impact of machine learning. Here an interesting idea is introduced to support a machine-learning framework for damage detection in local critical areas. The vibration field developed in a local area surrounding a ball bearing support of a lab flexible shaft-rotor system was measured by a set of accelerometers to form a dataset environment. It was used as an experience for machine learning by a deep convolutional neural network adapted from the AlexNet Architecture. Our main result is casting a solid mechanics prediction problem into a classification problem and eventually computing a solution by a deep learning technique. Current technology innovations are improving computer speed, data storage media, and graphics processing units. These factors are turning machine learning techniques into state-of-the-art computation-and-prediction tools that can be automated to deal with large volumes of vibration data. Prediction-diagnosis of damage results in improved condition monitoring of complex mechanical systems and this in turn infers economic gains due to estimated low-cost maintenance. Classical condition monitoring techniques have serious limitations such as the inability in learning from datasets the dynamics properties onboard installed machinery units operating under varying environmental conditions. | en |
heal.advisorName | Γεωργίου, Ιωάννης | el |
heal.committeeMemberName | Γεωργίου, Ιωάννης | el |
heal.committeeMemberName | Σπύρου, Κωνσταντίνος | el |
heal.committeeMemberName | Ανυφαντής, Κωνσταντίνος | el |
heal.academicPublisher | Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ναυπηγών Μηχανολόγων Μηχανικών | el |
heal.academicPublisherID | ntua | |
heal.numberOfPages | 45 σ. | el |
heal.fullTextAvailability | false | |
heal.fullTextAvailability | false |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: