HEAL DSpace

Using Convolutional Neural Network (CNN) to learn by sensor signal classification critical local areas in a physical flexible shaft rotor system as an example of a complicated mechanical system.

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Παπαγεωργίου, Παντελής-Παναγιώτης el
dc.contributor.author Papageorgiou, Pantelis-Panagiotis en
dc.date.accessioned 2023-01-18T12:21:36Z
dc.date.available 2023-01-18T12:21:36Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/56759
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.24457
dc.description Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Ναυτική και Θαλάσσια Τεχνολογία και Επιστήμη” el
dc.rights Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 3.0 Ελλάδα *
dc.rights Αναφορά Δημιουργού - Παρόμοια Διανομή 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-sa/3.0/gr/ *
dc.subject Vibration Signal Analysis en
dc.subject Convolution Neural Network en
dc.subject Machine Learning en
dc.subject Prognostic en
dc.subject Diagnostic en
dc.subject Προγνωστική el
dc.subject Διαγνωστική el
dc.subject Μηχανική Μάθηση el
dc.subject Ανάλυση Ταλαντώσεων el
dc.subject Τεχνητή Νοημοσύνη el
dc.title Using Convolutional Neural Network (CNN) to learn by sensor signal classification critical local areas in a physical flexible shaft rotor system as an example of a complicated mechanical system. el
heal.type masterThesis
heal.classification Prognostic & Diagnostic of complex mechanical systems en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2022-07-12
heal.abstract Complex machinery contains critical areas, such as revolute joints and bearings, that are prone to damage initiation and growth. If not detected early, damage in complex local areas leads to premature failure. The complexity of an integrated system is a factor that limits developed classical methods from detecting early damage in complex local areas. A pure experimental data environment could provide solutions given the broad impact of machine learning. Here an interesting idea is introduced to support a machine-learning framework for damage detection in local critical areas. The vibration field developed in a local area surrounding a ball bearing support of a lab flexible shaft-rotor system was measured by a set of accelerometers to form a dataset environment. It was used as an experience for machine learning by a deep convolutional neural network adapted from the AlexNet Architecture. Our main result is casting a solid mechanics prediction problem into a classification problem and eventually computing a solution by a deep learning technique. Current technology innovations are improving computer speed, data storage media, and graphics processing units. These factors are turning machine learning techniques into state-of-the-art computation-and-prediction tools that can be automated to deal with large volumes of vibration data. Prediction-diagnosis of damage results in improved condition monitoring of complex mechanical systems and this in turn infers economic gains due to estimated low-cost maintenance. Classical condition monitoring techniques have serious limitations such as the inability in learning from datasets the dynamics properties onboard installed machinery units operating under varying environmental conditions. en
heal.advisorName Γεωργίου, Ιωάννης el
heal.committeeMemberName Γεωργίου, Ιωάννης el
heal.committeeMemberName Σπύρου, Κωνσταντίνος el
heal.committeeMemberName Ανυφαντής, Κωνσταντίνος el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ναυπηγών Μηχανολόγων Μηχανικών el
heal.academicPublisherID ntua
heal.numberOfPages 45 σ. el
heal.fullTextAvailability false
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 3.0 Ελλάδα