HEAL DSpace

An aI-driven resource-recommendation system for cloud HPC

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Liakopoulos, Dimitrios en
dc.contributor.author Λιακόπουλος, Δημήτρης el
dc.date.accessioned 2023-01-23T10:44:45Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/56823
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.24521
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject Resource-Recommendation System en
dc.subject High-Performance Computing en
dc.subject Neural Networks en
dc.subject Cloud Computing en
dc.subject Hardware Acceleration en
dc.subject Σύστημα Σύστασης-Πόρων el
dc.subject Υπολογισμός Υψηλής-Επίδοσης el
dc.subject Νευρωνικά Δίκτυα el
dc.subject Yπολογιστικό Nέφος el
dc.subject Επιτάχυνση Υλικού el
dc.title An aI-driven resource-recommendation system for cloud HPC en
heal.type bachelorThesis
heal.classification Microcomputers and Digital Systems en
heal.dateAvailable 2024-01-22T22:00:00Z
heal.language el
heal.language en
heal.access embargo
heal.recordProvider ntua el
heal.publicationDate 2022-10-27
heal.abstract In recent years, the Cloud has evolved into a powerful environment with many instances available for the user to choose. Especially, for High-Performance Computing (HPC) applications the vast amount of available hardware leaves the user with a challenging choice to make. When making this choice, many aspects should be taken into account, in particular the available budget and the time-frame of the project. This information, although fundamental, is really hard to acquire before project completion. In this thesis, a Resource-Recommendation System, based on Neural-Networks (NNs), is proposed in order to help the user determine which instance fits their needs best and help them make their choice. For these reasons, different Multi-Layer Perceptrons (MPLs) where selected and evaluated on different High-Performance Computing (HPC) benchmarks, both synthetic and application. Initially, raw-data was collected from different Cloud instances for each benchmark and organised in a proper way to later be used. The next phase, was the data-prepossessing, in which each data-set was surveyed in order to determine the available trends and a synthetically-generated, more complete data-set was created for the majority of the benchmarks. Lastly, the new syntheticallygenerated data-set was encoded in a proper way and it was fed into the Neural Network (NN) in order to predict the execution times of each benchmark. In total, a combination of six different benchmarks and five Multi-Layer Perceptros (MLPs) were trained and evaluated. Last but not least, the training of the Neural-Networks (NNs) was realised both on Graphics Processing Units (GPUs) and Graphcore’s Intelligence Processing Units (IPUs). en
heal.advisorName Soudris, Dimitrios en
heal.committeeMemberName Soudris, Dimitrios en
heal.committeeMemberName Tsanakas, Panayiotis en
heal.committeeMemberName Xydis, Sotirios en
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών. Εργαστήριο Μικροϋπολογιστών και Ψηφιακών Συστημάτων VLSI el
heal.academicPublisherID ntua
heal.numberOfPages 149 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα