HEAL DSpace

Σχεδιασμός συστήματος συλλογής δεδομένων, κατασκευή προγραμματιστικών διεπαφών και προβλεπτικών μεθόδων για δεδομένα καταστροφών

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Βαγιανος, Ευάγγελος el
dc.contributor.author Vagianos, Efangelos en
dc.date.accessioned 2023-01-23T11:47:58Z
dc.date.available 2023-01-23T11:47:58Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/56835
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.24533
dc.rights Αναφορά Δημιουργού - Παρόμοια Διανομή 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-sa/3.0/gr/ *
dc.subject Disaster Databses en
dc.subject Machine learning en
dc.subject JSON en
dc.subject Python en
dc.subject Jupyter en
dc.subject Notebook en
dc.subject Βασεις Δεδομενων καταστροφης el
dc.subject Αλγοριθμοι μηχανικης μαθησης el
dc.title Σχεδιασμός συστήματος συλλογής δεδομένων, κατασκευή προγραμματιστικών διεπαφών και προβλεπτικών μεθόδων για δεδομένα καταστροφών el
heal.type bachelorThesis
heal.classification Databases Machine learning en
heal.language el
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2022-10-25
heal.abstract This thesis deals with the issue of searching and selecting heterogeneous disaster databases. The disasters analyzed, are divided into two minor categories according to the cause of their creation: these categories are geophysical and weather-related. Initially, databases containing a lot of data on these disasters had to be identified. Many government agencies and companies provide free access to all users to process their databases and draw useful conclusions. Nine databases were selected, and their contents and validity were compared. The criteria primarily concern the complete documentation and completeness of these databases. It was observed that many bases which apparently met the criteria were rejected due to missing records or because they contained outdated data. The nine selected bases were extensively analyzed based on their specific features. Then, an additional sorting (discarding) was done to select the five most complete. Using Python Pandas, these bases were freed from the redundant information they contained and configured based on a specific desired pattern. Using JSON, the database data were presented after the necessary processing had been done in Jupyter. The systems were analyzed in detail how they are used. Five machine learning (ML) classification algorithms were chosen and analyzed extensively by using definitions and examples. In the ‘’Disaster_Size’’ column of the Global landslide Catalog base, all five were applied to compare their effectiveness and to draw conclusions about the time and probability of success of each model. el
heal.advisorName Ασκούνης, Δημήτριος el
heal.committeeMemberName Ψαρρας, Ιωαννης el
heal.committeeMemberName Δουκας, Χρυσοστομος el
heal.committeeMemberName Ασκουνης, Δημήτριος el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Ηλεκτρικών Βιομηχανικών Διατάξεων και Συστημάτων Αποφάσεων el
heal.academicPublisherID ntua
heal.numberOfPages 84 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού - Παρόμοια Διανομή 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού - Παρόμοια Διανομή 3.0 Ελλάδα