HEAL DSpace

Collaborative Filtering Based DNN Partitioning and Offloading on Heterogeneous Edge Computing Systems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Κακολύρης, Ανδρέας-Κοσμάς el
dc.contributor.author Kakolyris, Andreas Kosmas en
dc.date.accessioned 2023-01-25T08:55:02Z
dc.date.available 2023-01-25T08:55:02Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/56896
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.24594
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject Cloud en
dc.subject Edge Computing en
dc.subject Collaborative Filtering en
dc.subject Neural Networks en
dc.subject Resource Management en
dc.subject Υπολογιστικό Νέφος el
dc.subject Ετερογένεια el
dc.subject Νευρωνικά Δίκτυα el
dc.subject Διαχείριση Πόρων el
dc.subject Τμηματοποίηση και Εκφόρτωση el
dc.title Collaborative Filtering Based DNN Partitioning and Offloading on Heterogeneous Edge Computing Systems en
dc.contributor.department Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών el
heal.type bachelorThesis
heal.classification Computer engineering en
heal.language el
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2022-10-31
heal.abstract Deep Neural Networks (DNNs) are an increasingly important part of many contemporary applications that reside at the edge of the Network. While DNNs are particularly effective at their respective tasks, they can be computationally intensive, often prohibitively so, when the resource and energy constraints of the edge computing environment are taken into account. In order to overcome these obstacles, the idea of partitioning and offloading part of the DNN computations to more powerful servers is often being proposed as a possible solution. While previous approaches have suggested resource management schemes to address this issue, the high dynamicity present in such environments is usually overlooked, both in regards to the variability of the DNN models and to the heterogeneous nature of the underlying hardware. In this thesis, we present a framework for DNN partitioning and offloading for edge computing systems. Our DNN partitioning and offloading framework utilizes a Collaborative Filtering mechanism based on knowledge gathered previously during profiling, in order to make quick and accurate estimates for the performance (latency) and energy consumption of the Neural Network layers over a diverse set of heterogeneous edge devices. Via the aggregation of this information and the utilization of an intelligent partitioning algorithm, our framework generates a set of Pareto optimal Neural Network splittings that trade-off between latency and energy consumption. Our framework is evaluated by using a variety of prominent DNN architectures to show that our approach outperforms current state-of-the-art methodologies by achieving a 9.58× speedup on average and up to 88.73% less energy consumption, simultaneously offering high estimation accuracy by limiting the prediction error down to 3.19% when it comes to latency and 0.18% when energy is concerned, while being lightweight and performing in a dynamic manner. en
heal.advisorName Soudris, Dimitrios
heal.committeeMemberName Xydis, Sotirios
heal.committeeMemberName Tsanakas, Panayiotis
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών el
heal.academicPublisherID ntua
heal.numberOfPages 72 σ el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα