HEAL DSpace

Development of a virtual sensor using convolutional neural networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kylikas, Angelos en
dc.contributor.author Κυλίκας, Άγγελος el
dc.date.accessioned 2023-01-25T11:25:38Z
dc.date.available 2023-01-25T11:25:38Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/56908
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.24606
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject Convolutional Neural Networks en
dc.subject Virtual Sensor en
dc.subject Engine Modelling en
dc.subject Time Series Prediction en
dc.title Development of a virtual sensor using convolutional neural networks en
heal.type bachelorThesis
heal.classification Marine Engineering en
heal.classification Neural Networks en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2022-10-31
heal.abstract In the current thesis, the development of a virtual sensor with the use of deep convolutional neural networks is investigated. The application, concerns a hybrid marine engine and the embedding of the software on it. On the first part, the mathematical foundations of the neural networks are described, with particular focus on convolutional neural networks and the tools required. Following that, the fundamental parameters of the engine operation are presented, concentrating on the parameters important for the current application. The next chapter, concerns the presentation of the physical system itself as well as the data used pre-processing. Additionally, the software embedding on the engine with the use of a Raspberry Pi coupled with a CAN bus controller, is discussed . The following part, is dedicated to specifying the model architectures as well as the statistical description of the data and their relationships. After selecting the inputs of the models, their training and the corresponding accuracy results are presented. Lastly, concluding remarks are discussed. The whole thesis, is carried out with the use of Julia Programming Language, which is also used for the software embedding on the Raspberry Pi. en
heal.advisorName Papalambrou, George en
heal.committeeMemberName Lyridis, Dimitrios en
heal.committeeMemberName Papadopoulos, Christos en
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ναυπηγών Μηχανολόγων Μηχανικών. Τομέας Ναυτικής Μηχανολογίας el
heal.academicPublisherID ntua
heal.numberOfPages 102 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα