HEAL DSpace

Analysis of steady-state and dynamic properties of human ovarian cancer cell metabolism

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Τούμπε, Ηλίας el
dc.contributor.author Toumpe, Ilias en
dc.date.accessioned 2023-03-10T08:36:07Z
dc.date.available 2023-03-10T08:36:07Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/57222
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.24920
dc.rights Αναφορά Δημιουργού-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nd/3.0/gr/ *
dc.subject Μεταβολική Μηχανική el
dc.subject Καρκίνος el
dc.subject Μεταβολισμός el
dc.subject Φαρμακευτικοί στόχοι el
dc.subject Κινητικά μοντέλα el
dc.subject Metabolic Engineering en
dc.subject Cancer en
dc.subject Drug targets en
dc.subject Constraint-based modeling en
dc.subject Kinetic modeling en
dc.title Analysis of steady-state and dynamic properties of human ovarian cancer cell metabolism en
dc.title Ανάλυση μόνιμης κατάστασης και δυναμικών ιδιοτήτων του μεταβολισμού των ανθρώπινων καρκινικών κυττάρων ωοθήκης el
heal.type bachelorThesis
heal.generalDescription H διπλωματική εργασία πραγματοποιήθηκε σε συνεργασία με την ομάδα του Καθηγητή Β. Χατζημανικάτη, LCSB, EPFL. el
heal.classification Μεταβολική Μηχανική el
heal.classification Βιοτεχνολογία el
heal.classification Συστημική Βιολογία el
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2022-09-26
heal.abstract This thesis aimed to build dynamic and steady-state models that describe the physiology of human ovarian cancer cells. A reduced constraint-based metabolic model derived from the Recon3D GEM was used along with thermodynamic, transcriptomic, metabolomic, and fluxomic data to examine the steady-state properties of ovarian cancer metabolism. To build the kinetic models, the directionalities of all reactions should be predefined. While the integrated data and other manually added constraints significantly reduced the number of bidirectional reactions, many remained. A modified ACHR sampling algorithm was used to sample feasible steady-state profiles, and the average sample point was used to extract directionalities for the remaining bidirectional reactions. Further thermodynamic curations and modal analysis implementation resulted in the production of steady sets of kinetic parameters that could also operate in physiologically relevant timeframes. Possible drug targets were proposed through Metabolic Control Analysis and further examined through simulations of enzyme perturbations. Enzymes Hexokinase (HEX1) and ATPM (ATP maintenance requirement reaction) significantly affected the cell’s survival, and Long-chain-fatty- acid—CoA ligase (FACOAL1821) showcased similar results, although to a lesser extent. Lastly, the model responses uncovered reaction r0474, which represents one of the many catalyzed reactions of the enzyme Ribonucleoside diphosphate reductase, as a promising drug target for mitigating cancer proliferation. All these enzymes are connected with deregulated metabolic pathways in cancer cells and have been suggested as interesting points for treatment development. Overall, the methods used and developed allowed for the production of the first large-scale kinetic model of ovarian cancer. Using this model, it is possible to identify drug targets for cancer elimination, perform simulations of dynamic responses of the cancer cell’s metabolic network as well as quantify the effects of candidate drug targets on cancer proliferation. Using such models can assist the study of specific types of cancer cells’ physiology and accelerate the drug development process. Physiology-specific drug targets can be suggested, and early estimations of the toxicity response and effective drug dosages can be calculated. en
heal.sponsor Masters Thesis Grant - Zeno Karl Schindler Foundation en
heal.advisorName Μπουντουβής, Ανδρέας el
heal.committeeMemberName Μπουντουβής, Ανδρέας el
heal.committeeMemberName Μαμμά, Διομή el
heal.committeeMemberName Χατζημανικάτης, Βασίλης el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Χημικών Μηχανικών. Τομέας Ανάλυσης, Σχεδιασμού και Ανάπτυξης Διεργασιών και Συστημάτων (ΙΙ) el
heal.academicPublisherID ntua
heal.numberOfPages 50 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Όχι Παράγωγα Έργα 3.0 Ελλάδα