dc.contributor.author | Ιliopoulos, Panagiotis - Georgios | en |
dc.contributor.author | Ηλιόπουλος, Παναγιώτης - Γεώργιος | el |
dc.date.accessioned | 2023-03-10T09:37:38Z | |
dc.date.available | 2023-03-10T09:37:38Z | |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/57226 | |
dc.identifier.uri | http://dx.doi.org/10.26240/heal.ntua.24924 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ | * |
dc.subject | Big data analytics | en |
dc.subject | Ανάλυση δεδομένων | el |
dc.subject | Ship performance monitoring | en |
dc.subject | Machine learning | en |
dc.subject | Data anomaly detection | en |
dc.subject | Energy efficiency Emission control | en |
dc.subject | Ποσοτικοποίηση της απόδοσης ενός πλοίου | el |
dc.subject | Μηχανική μάθηση | el |
dc.subject | Ανίχνευση επισφαλών μετρήσεων | el |
dc.subject | Έλεγχος εκπομπών ενεργειακής απόδοσης | el |
dc.title | Investigation of data preprocessing techniques for ship performance analysis | en |
dc.title | Έρευνα τεχνικών προεπεξεργασίας δεδομένων με σκοπό την ποσοτικοποίηση της απόδοσης ενός πλοίου | el |
heal.type | bachelorThesis | |
heal.classification | Data preprocessing | en |
heal.classification | Προεπεξεργασία δεδομένων | el |
heal.classification | Data preperation | en |
heal.classification | Ship performance analysis | en |
heal.classification | Ανάλυση της απόδοσης ενός πλοίου | el |
heal.language | en | |
heal.access | free | |
heal.recordProvider | ntua | el |
heal.publicationDate | 2022-12-21 | |
heal.abstract | The environmental impact of air emissions produced by the maritime industry is being reduced by increasing the operating energy efficiency of existing ships. An increasing number of vessels are equipped with sensors and devices for monitoring operational behavior, and the amount and access to operational data is gradually increasing. Big data analytics can drastically improve the ship's performance. With the use of proper data preprocessing techniques as well as domain expertise, this research provides an extensive data analytics framework for tracking ship performance under localized operational conditions. A data set from a containership is used to demonstrate the proposed framework. Due to various reasons described in this thesis, the operational data may contain erroneous data points that are critical to assess before performing data analysis or building mathematical and statistical models. The presented investigation relates to detecting data anomalies, identifying the ship's localized operational conditions, calculating the relative correlations among the ship’s operational parameters, quantifying the ship's performance in each of the respective conditions, and the visual representation and analysis of the results. The innovative aspect of this study is the provision of a KPI (i.e., key performance indicator) for ship performance quantification in order to determine the optimal performance trim-draft mode under the engine modes of the case study ship. The suggested framework can be used as an operational energy efficiency measure to provide data quality evaluation and decision support for ship performance monitoring that is valuable to both ship operators and decision-makers. | en |
heal.advisorName | Θεμελής, Νικόλαος | el |
heal.advisorName | Themelis, Nikolaos | en |
heal.committeeMemberName | Σπύρου, Κώστας | el |
heal.committeeMemberName | Θεμελής, Νικόλαος | el |
heal.committeeMemberName | Παπαδόπουλος, Χρήστος | el |
heal.academicPublisher | Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ναυπηγών Μηχανολόγων Μηχανικών. Τομέας Μελέτης Πλοίου και Θαλάσσιων Μεταφορών | el |
heal.academicPublisherID | ntua | |
heal.numberOfPages | 82 σ. | el |
heal.fullTextAvailability | false |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: