HEAL DSpace

Stochastic Computing Architectures for Information Processing Systems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Τέμενος, Νικόλαος el
dc.contributor.author Nikolaos, Temenos en
dc.date.accessioned 2023-03-20T08:46:08Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/57248
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.24946
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject Stochastic Computing en
dc.subject Digital Circuits and Systems el
dc.subject Stochastic Finite-State Machine el
dc.subject Markov Chain el
dc.title Stochastic Computing Architectures for Information Processing Systems en
heal.type doctoralThesis
heal.classification Electrical and Computer Engineering en
heal.dateAvailable 2024-03-19T22:00:00Z
heal.language en
heal.access embargo
heal.recordProvider ntua el
heal.publicationDate 2022-12-13
heal.abstract Arithmetic operations on stochastic sequences is the basis of the unconventional computational approach known as Stochastic Computing (SC). Deviating from the standard binary arithmetic, SC encodes and processes the value of binary numbers in the form of stochastic sequences, making arithmetic operations and highly-complex functions realizable using a few simple standard logic gates and memory elements, having inherent natural robustness in soft-errors. SC’s properties and advantages have been exploited in a plethora of fields characterized by massive parallelism requirements like Neural Networks and Image Processing. Beyond its strong points, SC introduces an accuracy-latency trade-off impacting the energy efficiency. Therefore, achieving low latency along with increased computational accuracy is the primary design goal is SC systems. This dissertation presents novel SC architectures realizing essential arithmetic operations and nonlinear functions, as well as realistic Neural Networks and Image Processing applications based on them. In the first part of the dissertation, the operating principles of the architectures are introduced and their behavior is modeled based on Stochastic Finite-State Machines (SFSM) and analyzed using Markov Chains (MC). This leads to a deeper understanding of their stochastic dynamics and the verification of their proper operation. The MC modeling is further extended to a general methodology enabling the analytical derivation of the SFSMs. first and second moment statistical properties. The methodology is accompanied by overflow/underflow MC modeling, allowing to balance the accuracy-latency trade-off according to performance requirements, and to set the guidelines for the selection of the register’s size. In the second part of the dissertation, the proposed architectures are compared to existing ones, in the SC literature, in computational accuracy and hardware resources, including area, power and energy consumption as well as in terms of their advantages in the overall design flow. The efficacy of the architectures is demonstrated by using them as building blocks in the realization of several Digital Signal Processing (DSP) operations, including convolution, noise reduction and image down-sampling filters as well as Neural Networks. Finally, the results of the introduced architectures’ performance in computational accuracy and hardware resources are compared to those achieved using standard binary computing methods highlighting the advantages of the first ones. en
heal.sponsor The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number:1216) en
heal.advisorName Σωτηριάδης Παύλος-Πέτρος el
heal.advisorName Sotiriadis, Paul en
heal.committeeMemberName Panagopoulos, Athanasios
heal.committeeMemberName Pekmestzi, Kiamal en
heal.committeeMemberName Varvarigou, Theodora en
heal.committeeMemberName Psarrakos, Panayiotis en
heal.committeeMemberName Doulamis, Anastasios en
heal.committeeMemberName Doulamis, Nikolaos en
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών el
heal.academicPublisherID ntua
heal.numberOfPages 147 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα