HEAL DSpace

Solving parametrized liinear systems of equations with the variational quantum linear solver

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Constantinos, Atzarakis en
dc.contributor.author Κωνσταντίνος, Ατζαράκης el
dc.date.accessioned 2023-04-06T07:30:03Z
dc.date.available 2023-04-06T07:30:03Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/57490
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.25187
dc.description Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) "Επιστήμη Δεδομένων και Μηχανική Μάθηση" el
dc.rights Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-sa/3.0/gr/ *
dc.subject Quantum information en
dc.subject Μηχανική μάθηση el
dc.subject Γραμμικά συστήματα el
dc.subject Κβαντικοί αλγόριθμοι el
dc.subject Κβαντικοί υπολογιστές el
dc.subject Παραμετρικά συστήματα εξισώσεων el
dc.subject Quantum computing en
dc.subject Linear systems of equations en
dc.subject Quantum algorithms en
dc.subject Variational quantum algorithms en
dc.title Solving parametrized liinear systems of equations with the variational quantum linear solver en
heal.type masterThesis
heal.secondaryTitle A first attempt to pair a Variational Quantum Algorithm with Machine Learning el
heal.classification Quantum Computing en
heal.classification machine learning el
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2023-02-20
heal.abstract The potential of quantum computing for scientific and industrial breakthroughs is immense, however, we are still in the Noisy Intermediate-Scale quantum (NISQ) era, where the currently available quantum devices contain small numbers of qubits, are very sensitive to environmental conditions and prone to quantum decoherence. Even so, existing NISQ computers have already been shown to outperform conventional computers on specific problems and the key question is how to make use of today’s NISQ devices to achieve quantum advantage in the field of computational science and engineering (CSE). In this direction, this work proposes a hybrid computing formulation by combining quantum computing with machine learning for accelerating the solution of parameterized linear systems in NISQ devices. In particular, it focuses on the Variational Quantum Linear Solver (VQLS), which is hybrid quantum- classical algorithm to solve linear systems that employs a short-depth quantum circuit to efficiently evaluate a cost function related to the system solution. The circuit consists of a quantum gate sequence (unitary operators) that involves a set of tunable parameters. Then, well-established classical optimizers are being utilized to tune the parameters of the sequence so as to minimize the cost function, which is equivalent to finding the system solution at an acceptable level of accuracy. It is demonstrated in this work that we can successfully employ machine learning tools such as feed-forward neural networks and nearest-neighbor interpolation techniques to accelerate the convergence of the VQLS algorithm towards the optimal values for the circuit parameters, when applied to parameterized linear systems that need to be solved for multiple parameter instances. This of a great importance to the field of CSE as it paves the way to accelerating the solution to almost all multi-query problems (uncertainty propagation, parameter inference, optimization, sensitivity analysis etc.) as these essentially reduce to the solution of a parameterized linear system. en
heal.advisorName Papadopoulos, Vissarion en
heal.committeeMemberName Fragiadakis, Michalis en
heal.committeeMemberName Triantafyllou, Savvas en
heal.committeeMemberName Papadopoulos, Vissarion en
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών el
heal.academicPublisherID ntua
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 3.0 Ελλάδα