dc.contributor.author |
Georgios, Pipilis
|
en |
dc.contributor.author |
Γεώργιος, Πιπιλής
|
el |
dc.date.accessioned |
2023-04-06T11:01:00Z |
|
dc.date.available |
2023-04-06T11:01:00Z |
|
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/57509 |
|
dc.identifier.uri |
http://dx.doi.org/10.26240/heal.ntua.25206 |
|
dc.description |
Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) "Επιστήμη Δεδομένων και Μηχανική Μάθηση" |
el |
dc.rights |
Default License |
|
dc.subject |
Recommender system |
en |
dc.subject |
Clustering |
en |
dc.subject |
Spotify |
en |
dc.subject |
Music recommendation |
en |
dc.subject |
Content based filtering |
en |
dc.subject |
Πρόταση μουσικής |
el |
dc.subject |
Συστήματα προτάσεων |
el |
dc.subject |
Ομαδοποίηση |
el |
dc.subject |
Μηχανική Μάθηση |
el |
dc.subject |
Σπότιφαι |
el |
dc.title |
Creating & evaluating a music recommender system without access to multiple user data |
en |
heal.type |
masterThesis |
|
heal.secondaryTitle |
Implementation and Testing on the Spotify Platform |
en |
heal.classification |
Computer Science |
en |
heal.language |
en |
|
heal.access |
free |
|
heal.recordProvider |
ntua |
el |
heal.publicationDate |
2022-09-01 |
|
heal.abstract |
A recommender system is a type of algorithm that provides personalized recommendations to users based on either their past behaviors or preferences or the properties of the content they consume. It is commonly used in e-commerce, streaming services, social media platforms, and other applications to enhance user experience and engagement. When it comes to music, recommender systems usually rely on vast amounts on user or track data in order to generate suggestions. This diploma thesis aims to explore the creation and evaluation of a full recommender system pipeline that does not rely on data from multiple users or bleeding edge computing resources in order to function. This is done through the exploration of a listener’s Spotify music history. The final algorithm, as well as the methods in which it is evaluated, will be compared to Spotify in order to evaluate how far one can reach without the need for extra resources. |
en |
heal.advisorName |
Kollias, Stefanos |
en |
heal.committeeMemberName |
Stamou, Georgios |
en |
heal.committeeMemberName |
Kollias, Stefanos |
en |
heal.committeeMemberName |
Voulodimos, Athanasios |
en |
heal.academicPublisher |
Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών |
el |
heal.academicPublisherID |
ntua |
|
heal.numberOfPages |
55 σ. |
el |
heal.fullTextAvailability |
false |
|