HEAL DSpace

Creating & evaluating a music recommender system without access to multiple user data

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Georgios, Pipilis en
dc.contributor.author Γεώργιος, Πιπιλής el
dc.date.accessioned 2023-04-06T11:01:00Z
dc.date.available 2023-04-06T11:01:00Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/57509
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.25206
dc.description Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) "Επιστήμη Δεδομένων και Μηχανική Μάθηση" el
dc.rights Default License
dc.subject Recommender system en
dc.subject Clustering en
dc.subject Spotify en
dc.subject Music recommendation en
dc.subject Content based filtering en
dc.subject Πρόταση μουσικής el
dc.subject Συστήματα προτάσεων el
dc.subject Ομαδοποίηση el
dc.subject Μηχανική Μάθηση el
dc.subject Σπότιφαι el
dc.title Creating & evaluating a music recommender system without access to multiple user data en
heal.type masterThesis
heal.secondaryTitle Implementation and Testing on the Spotify Platform en
heal.classification Computer Science en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2022-09-01
heal.abstract A recommender system is a type of algorithm that provides personalized recommendations to users based on either their past behaviors or preferences or the properties of the content they consume. It is commonly used in e-commerce, streaming services, social media platforms, and other applications to enhance user experience and engagement. When it comes to music, recommender systems usually rely on vast amounts on user or track data in order to generate suggestions. This diploma thesis aims to explore the creation and evaluation of a full recommender system pipeline that does not rely on data from multiple users or bleeding edge computing resources in order to function. This is done through the exploration of a listener’s Spotify music history. The final algorithm, as well as the methods in which it is evaluated, will be compared to Spotify in order to evaluate how far one can reach without the need for extra resources. en
heal.advisorName Kollias, Stefanos en
heal.committeeMemberName Stamou, Georgios en
heal.committeeMemberName Kollias, Stefanos en
heal.committeeMemberName Voulodimos, Athanasios en
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών el
heal.academicPublisherID ntua
heal.numberOfPages 55 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής