HEAL DSpace

Optimizing inventory control through a data-driven and model-independent framework

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Θεοδώρου, Ευάγγελος
dc.date.accessioned 2023-04-28T09:03:30Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/57580
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.25277
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject Inventory control management en
dc.subject Machine learning en
dc.subject Demand patterns en
dc.subject Large scale optimization en
dc.title Optimizing inventory control through a data-driven and model-independent framework en
heal.type journalArticle
heal.classification Επιχειρησιακή έρευνα el
heal.classification Operational research en
heal.contributorName Σπηλιώτης, Ευαγγελος
heal.contributorName Ασημακόπουλος, Βασίλειος
heal.dateAvailable 2024-04-27T21:00:00Z
heal.language en
heal.access embargo
heal.recordProvider ntua el
heal.publicationDate 2022-12-27
heal.bibliographicCitation Theodorou, E., Spiliotis, E., & Assimakopoulos, V., Optimizing inventory control through a data-driven and model-independent framework, EURO Journal on Transportation and Logistics, 12, 100103, Elsevier, 2022. en
heal.abstract Machine learning has shown great potential in various domains, but its appearance in inventory control optimization settings remains rather limited. We propose a novel inventory cost minimization framework that exploits advanced decision-tree based models to approximate inventory performance at an item level, considering demand patterns and key replenishment policy parameters as input. The suggested approach enables data-driven approximations that are faster to perform compared to standard inventory simulations, while being flexible in terms of the methods used for forecasting demand or estimating inventory level, lost sales, and number of orders, among others. Moreover, such approximations can be based on knowledge extracted from different sets of items than the ones being optimized, thus providing more accurate proposals in cases where historical data are scarce or highly affected by stock-outs. The framework was evaluated using part of the M5 competition’s data. Our results suggest that the proposed framework, and especially its transfer learning variant, can result in significant improvements, both in terms of total inventory cost and realized service level. en
heal.publisher Elsevier en
heal.journalName EURO Journal on Transportation and Logistics en
heal.journalType peer-reviewed
heal.fullTextAvailability false
dc.identifier.doi https://doi.org/10.1016/j.ejtl.2022.100103 el


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα