HEAL DSpace

On the efficiency of Extreme Gradient Boosting for performance/energy predictability on heterogeneous resources

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Gouliamou, Maria-Ethel en
dc.contributor.author Γουλιάμου, Μαρία- Έθελ el
dc.date.accessioned 2023-05-04T08:56:44Z
dc.date.available 2023-05-04T08:56:44Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/57621
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.25318
dc.rights Default License
dc.subject Υπολογιστικό νέφος el
dc.subject Μηχανική μάθηση el
dc.subject Machine Learning en
dc.subject Cloud Computing en
dc.subject OPENMP en
dc.subject CUDA en
dc.subject XGB en
dc.subject Application Monitoring en
dc.title On the efficiency of Extreme Gradient Boosting for performance/energy predictability on heterogeneous resources en
dc.title Σχετικά με την αποτελεσματικότητα του Extreme Gradient Boosting για την προβλεψιμότητα απόδοσης/ενέργειας σε ετερογενείς πόρους el
heal.type bachelorThesis
heal.classification machine learning en
heal.language el
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2023-02-21
heal.abstract Cloud computing has become an increasingly popular way for businesses to scale up their computing resources without having to make large upfront investments in hardware and infrastructure. The increasing availability of high-speed internet and the need for companies to scale their computing resources quickly and efficiently, are some of the main reasons that explain the rise of cloud computing. Heterogeneous cloud centers are gaining popularity among organizations that seek to optimize their computing resources and achieve greater agility, scalability, and cost savings. With this rise comes the need for cloud providers to manage an increasing workload, targeting different platforms (e.g CPU, GPU). Cloud providers need to distribute applications on the various platforms readily available in a way that both execution time and energy consumption are optimized providing better overall performance and customer service with heterogeneity in mind. In this direction, we develop a methodology in order to examine the behavior of different applications, of different sizes on different servers with the use of different number of threads on both CPU and GPU. To evaluate our methodology we use Rodinia benchmark suite, that consists of applications targeting multicore CPUs and GPUs, using OpenMP and CUDA respectively. We compare the experimental results referring to execution time, energy consumption and low-level metrics. We then develop ML models, targeting different platforms, that predict these metrics (execution time, energy consumption and low-level metrics) for different running environments. Using the XGB algorithm, our models achieve r2 scores of 0.99 in cpu, 0.98 in gpu and 0.99 in cpu to gpu platform, while they perform poorly when it comes to unseen application and datasizes but very satisfactory for unseen servers and number of threads. en
heal.advisorName Soudris, Dimitrios en
heal.committeeMemberName Soudris, Dimitrios en
heal.committeeMemberName Tsanakas, Panayiotis en
heal.committeeMemberName Xydis, Sotirios en
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών el
heal.academicPublisherID ntua
heal.fullTextAvailability false
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής