HEAL DSpace

Prediction of dynamic performance of NTUA semi-planing series using Artificial Neural Networks (ANN)

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papantoniou, Michail en
dc.contributor.author Παπαντωνίου, Μιχαήλ el
dc.date.accessioned 2023-05-05T09:37:44Z
dc.date.available 2023-05-05T09:37:44Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/57636
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.25333
dc.rights Default License
dc.subject Semi-Planing en
dc.subject Data modelling en
dc.subject ANN en
dc.subject Regular waves en
dc.subject Dynamic performance en
dc.title Prediction of dynamic performance of NTUA semi-planing series using Artificial Neural Networks (ANN) en
heal.type bachelorThesis
heal.classification Naval Engineering en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2023-03-27
heal.abstract The objective of this thesis is to develop a model capable of predicting the seakeeping performance of NTUA Semi-Planing Series in head seas and regular waves. The study highlights the potential of ANN as a data driven approach for predicting accurately the seakeeping performance of these hull forms el
heal.advisorName Grigoropoulos, Gregory en
heal.committeeMemberName Zaraphonitis, George en
heal.committeeMemberName Papadakis, George en
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ναυπηγών Μηχανολόγων Μηχανικών el
heal.academicPublisherID ntua
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής