dc.contributor.author |
Papantoniou, Michail
|
en |
dc.contributor.author |
Παπαντωνίου, Μιχαήλ
|
el |
dc.date.accessioned |
2023-05-05T09:37:44Z |
|
dc.date.available |
2023-05-05T09:37:44Z |
|
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/57636 |
|
dc.identifier.uri |
http://dx.doi.org/10.26240/heal.ntua.25333 |
|
dc.rights |
Default License |
|
dc.subject |
Semi-Planing |
en |
dc.subject |
Data modelling |
en |
dc.subject |
ANN |
en |
dc.subject |
Regular waves |
en |
dc.subject |
Dynamic performance |
en |
dc.title |
Prediction of dynamic performance of NTUA semi-planing series using Artificial Neural Networks (ANN) |
en |
heal.type |
bachelorThesis |
|
heal.classification |
Naval Engineering |
en |
heal.language |
en |
|
heal.access |
free |
|
heal.recordProvider |
ntua |
el |
heal.publicationDate |
2023-03-27 |
|
heal.abstract |
The objective of this thesis is to develop a model capable of predicting the seakeeping performance of NTUA Semi-Planing Series in head seas and regular waves.
The study highlights the potential of ANN as a data driven approach for predicting accurately the seakeeping performance of these hull forms |
el |
heal.advisorName |
Grigoropoulos, Gregory |
en |
heal.committeeMemberName |
Zaraphonitis, George |
en |
heal.committeeMemberName |
Papadakis, George |
en |
heal.academicPublisher |
Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ναυπηγών Μηχανολόγων Μηχανικών |
el |
heal.academicPublisherID |
ntua |
|
heal.fullTextAvailability |
false |
|