HEAL DSpace

Βραχυπρόθεσμη πρόβλεψη φορτίου ηλεκτρικής ενέργειας με χρήση τεχνητών νευρωνικών δικτύων τύπου Long-Short Term Memory

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Μαστοράκης, Αλέξιος el
dc.contributor.author Mastorakis, Alexios en
dc.date.accessioned 2023-05-08T09:19:04Z
dc.date.available 2023-05-08T09:19:04Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/57647
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.25344
dc.rights Default License
dc.subject Πρόβλεψη Χρονοσειρών el
dc.subject Τεχνητά Νευρωνικά δίκτυα el
dc.subject Κατανάλωση ηλεκτρικής ενέργειας el
dc.subject Αναδρομικά νευρωνικά δίκτυα el
dc.subject lstm en
dc.subject Time Series Forecasting en
dc.subject Electricity consumption en
dc.subject Artificial Neural Networks en
dc.subject Recurrent neural networks en
dc.title Βραχυπρόθεσμη πρόβλεψη φορτίου ηλεκτρικής ενέργειας με χρήση τεχνητών νευρωνικών δικτύων τύπου Long-Short Term Memory el
heal.type bachelorThesis
heal.classification Μηχανική μάθηση el
heal.classification Συστήματα ηλεκτρικής ενέργειας el
heal.language el
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2023-03-09
heal.abstract Στην παρούσα διπλωματική εργασία επιδιώκεται να πραγματοποιηθεί βραχυπρόθεσμη πρόβλεψη ορίζοντα μίας ώρας, 12 ωρών της ίδια ημέρας και των επόμενων 24 ωρών της επόμενης ημέρας. Η ανάγκη για τέτοια πρόβλεψη αναδείχτηκε με την απελευθέρωση της αγοράς και τη διείσδυση πολλών συμμετεχόντων σε αυτήν. Στο περιβάλλον του ανταγωνισμού και της μεταβλητότητας που χαρακτηρίζει την αγορά, μια εύστοχη πρόγνωση του φορτίου της ηλεκτρικής ενέργειας της επόμενης ημέρας επωφελεί όλους τους συμμετέχοντες, για διαφορετικούς λόγους έκαστο. Η προσέγγισή μας για αυτή την πρόγνωση γίνεται με δύο τρόπους, αρχικά με στατιστικές μεθόδους, δηλαδή με αυτοπαλιδρομικά μοντέλα κινητού μέσου όρου (ARΙMA) , και με τη χρήση ενός απλού νευρωνικού δικτύου (Αrtificial Neural Networks ή ANN) τύπου πολυεπίπεδου Perceptron (MLP ή Multilayer Perceptron) και στην συνέχεια με Αναδρομικά Νευρωνικά Δίκτυα που αποτελούνται από στρώματα νευρώνων Μακράς Βραχείας Μνήμης (Long Short Term Memory ή LSTM). Προκειμένου να μελετηθεί η αποδοτικότητα πρόβλεψης φορτίου μεταξύ των δύο κατηγοριών μοντέλων υλοποιούνται με χρήση δύο διαφορετικών διαστημάτων δεδομένων εισόδου: Το πρώτο διάστημα περιλαμβάνει τις προηγούμενες 24 ώρες και το δεύτερο διάστημα περιλαμβάνει τις προηγούμενες 168 ώρες, δηλαδή ωριαίες τιμές φορτίου της προηγούμενης ημέρας και εβδομάδας αντίστοιχα. Στη συνέχεια, εκτιμάται η απόδοση των μοντέλων, συγκρίνονται τα σφάλματα που προκύπτουν από τις διαφορετικές μεθόδους πρόβλεψης, διαπιστώνεται η υπεροχή των νευρωνικών έναντι των στατιστικών μοντέλων και αξιολογείται η βελτίωση που προσφέρει η χρήση μηχανικής μάθησης στην πρόγνωση της κατανάλωσης ηλεκτρικής ενέργειας. el
heal.advisorName Χατζηαργυρίου, Νικόλαος el
heal.advisorName Κωνσταντίνου, Θεόδωρος el
heal.committeeMemberName Χατζηαργυρίου, Νικόλαος el
heal.committeeMemberName Παπαθανασίου, Σταύρος el
heal.committeeMemberName Γεωργιλάκης, Παύλος el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Ηλεκτρικής Ισχύος el
heal.academicPublisherID ntua
heal.numberOfPages 99 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής