HEAL DSpace

Camouflaged object detection and segmentation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Στρατάκης, Μιχαήλ el
dc.contributor.author Stratakis, Michail en
dc.date.accessioned 2023-05-15T10:40:56Z
dc.date.available 2023-05-15T10:40:56Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/57706
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.25403
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject Καμουφλαρισμένα Αντικείμενα, Τμηματοποίηση Εικόνας, Aυτό-Προσοχή el
dc.subject Camouflaged Object en
dc.subject Image Segmentation en
dc.subject Self-Attention en
dc.title Camouflaged object detection and segmentation en
dc.title Ανίχνευση και τμηματοποίηση καμουφλαρισμένων αντικειμένων el
heal.type bachelorThesis
heal.classification Computer Vision en
heal.language el
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2023-03-20
heal.abstract Camouflaged object detection and segmentation is a branch of computer vision that aims to find objects that are difficult to detect by the human eye. This is a process opposite to finding a salient object, where the parts of the image to be detected are distinct, easily recognizable and their boundaries are differentiated enough from the rest of the background environment. In the case of camouflaged objects, the parts of the image to be detected often show a high similarity to the rest of the environment, greatly increasing the difficulty and challenges that must be faced to carry out this task. In this thesis we introduce a new architecture that combines the powerful capabilities of Transformer En- coders, for extracting global features, with the existing structures of Convolutional Encoders for capturing local features. When detecting a camouflaged object it is quite difficult to detect the exact details near its edges. Inspired by this ability of these objects, we introduce a novel method for combining the extracted features from these two encoders in order to produce rich features both at the level of detail and at the level of semantic interpretation. We evaluate and compare our model on common datasets and with common evaluation metrics and present our findings. The results obtained are quite encouraging as they achieve excellent performance and are able to stand up against the latest technologies in literature. Finally, we observe how the performance of our model changes as we modify either the algorithm or some parameters and afterwards we point out possible uses of our model for medical and other purposes. en
heal.advisorName Stamou, Giorgos en
heal.committeeMemberName Stamou, Giorgos en
heal.committeeMemberName Voulodimos, Athanasios en
heal.committeeMemberName Kollias, Stefanos en
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών el
heal.academicPublisherID ntua
heal.numberOfPages 56 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα