HEAL DSpace

A novel reconfigurable out-of-order GPU microarchitecture with runtime workload characterization

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Eleftherakis, Panagiotis-Eleftherios en
dc.contributor.author Ελευθεράκης, Παναγιώτης-Ελευθέριος el
dc.date.accessioned 2023-05-24T06:42:11Z
dc.date.available 2023-05-24T06:42:11Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/57747
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.25444
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject General-Purpose GPU en
dc.subject GPU γενιϰού σϰοπού el
dc.subject High Performance Computing en
dc.subject Reconfigurable computing en
dc.subject Instruction Level Parallelism en
dc.subject Out-of-Order en
dc.subject Parallel Systems en
dc.subject Energy Efficient computing en
dc.subject Modelling and Simulation en
dc.subject Υψηλή υπολογιστιϰή επίδοση el
dc.subject Αναδιαµορφώσιµες αρχιτεϰτονιϰές el
dc.subject Παραλληλία επιπέδου εντολής el
dc.subject Εϰτός σειράς αρχιτεϰτονιϰή el
dc.subject Παράλληλα συστήµατα el
dc.subject Ενεργειαϰή απόδοση υπολογισµού, el
dc.subject Μοντελοποίηση ϰαι προσοµοίωση el
dc.title A novel reconfigurable out-of-order GPU microarchitecture with runtime workload characterization en
heal.type bachelorThesis
heal.classification Computer engineering en
heal.language el
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2023-03-21
heal.abstract Since the breakdown of Moore’s law, high processor performance has been driven by Massively Parallel Processing and hardware specialization. The halt met by Dennard’s scaling and the advent of the "Dark Silicon Era" necessitate energy-efficient computing. In this context, heterogeneous architectures and reconfigurable computing have emerged as flexible approaches for achieving the above goals. Meanwhile, the previously proposed Light-weight Out-of-Order GPU (LOOG) execution scheme addresses the performance stagnation met by a class of general-purpose GPU workloads, by complementing the traditional TLP leveraging and fast context switching of the GPU, with exploitation of the inherent Instruction Level Parallelism (ILP) of these workloads. As it constitutes the backbone of this thesis, we implement it in the most recent version of Accel-Sim, a GPU simulation framework that provides modelling of recent high-end NVIDIA GPU architectures, built around the performance model of GPGPU-Sim 4.1.0, a cycle-level GPU performance simulator. Having accommodated LOOG on an HPC-relevant platform (NVIDIA Quadro GV100, powered by the Volta microarchitecture) by right-sizing its structures, implementing a dynamic Instruction Buffer reconfiguration mechanism and optimally configuring GPU pipeline front-end components, we collect detailed architecture bottleneck statistics across 7 benchmark suites and 100 CUDA kernels. The emerging application characterization and the study of workload characteristics that predict speedup on LOOG, paired with a scalability analysis of LOOG components from an architectural standpoint, motivates the assessment of a Scalable, Reconfigurable Out-of-Order GPU Microarchitecture that appropriately handles both kernels deemed LOOG-sensitive as well as generic kernels, to maximize performance or energy efficiency. The reconfigurable microarchitecture is evaluated under different reconfiguration schemes and granularities, including a per-kernel-launch granularity hardware reconfiguration controller using runtime performance counters to predict application OOO performance improvement. A static scale-up LOOG configuration provides a speedup of 1.48 for generic kernels and a 13.7% reduction in energy dissipation, compared to the baseline architecture. Reconfiguration under programmer-assisted directives and using the hardware controller can provide the same speedup when needed and have the potential to improve energy efficiency from baseline (in-order microarchitecture) by 22.4% and 19.5% respectively en
heal.advisorName Soudris, Dimitrios en
heal.committeeMemberName Soudris, Dimitrios en
heal.committeeMemberName Xydis, Sotirios en
heal.committeeMemberName Tsanakas, Panagiotis en
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών. Εργαστήριο Μικροϋπολογιστών και Ψηφιακών Συστημάτων VLSI el
heal.academicPublisherID ntua
heal.numberOfPages 204 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα