HEAL DSpace

Εξηγήσιμη ομαδοποίηση σε ευσταθή στιγμιότυπα

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Παπανικολάου, Ηλίας el
dc.contributor.author Papanikolaou, Ilias en
dc.date.accessioned 2023-05-24T07:00:14Z
dc.date.available 2023-05-24T07:00:14Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/57751
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.25448
dc.rights Default License
dc.subject Ερμηνεύσιμη Μηχανική Μάθηση el
dc.subject Interpretable Machine Learning en
dc.subject Εξηγήσιμη Ομαδοποίηση el
dc.subject Ανάλυση πέρα από τη χειρότερη περίπτωση el
dc.subject Ευστάθεια σε διαταραχές el
dc.subject Μετρικοί Χώροι el
dc.subject Explainable Clustering en
dc.subject Beyond the worst-case analysis en
dc.subject Perturbation stability en
dc.subject Metric Spaces en
dc.title Εξηγήσιμη ομαδοποίηση σε ευσταθή στιγμιότυπα el
heal.type bachelorThesis
heal.classification Algorithms en
heal.language el
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2023-04-04
heal.abstract This thesis is concerned with the explainable clustering problem under stability assumptions. Explainable Clustering is an interpretation method developed by Dasgupta et al. that aims to provide concise explanations for the inclusion of each data point in a cluster. The question that we try to answer is whether the Price of Explainability, i.e. the inherent cost due to the restricted solution format that guarantees explainability, can be reduced if we assume that the input clustering instances satisfy either the proximity or the perturbation stability property. After we introduce several stability notions in the context of clustering and analyze the most important algorithms for explainable clustering, we show that under $a$-center stability, with $a = \Omega(k d^{\frac{1}{p}})$ there are explainable algorithms with constant approximation ratio. Next, we study the stability of several hard explainable clustering instances and prove that this dependence on the number of dimensions $d$ and clusters $k$ is necessary. More specifically, we manage to show that there are some hard clustering instances with the $\mathcal{l}_p$ objective that satisfy the $a$-proximity with $a = \Omega\left(kd^{\frac{1}{p}}\right)$ and there exist $\Omega(\sqrt{d})$-(metric) perturbation stable instances in the $k$-median case ($p = 1$), where $d$ is the number of the dimensions of the dataset. To prove the second result, we show that if a clustering instance satisfies the $a$-proximity property along with a property that ensures that all clusters in the optimal clustering have roughly the same cost, then this instance is $\Omega(\sqrt{a})$-metric perturbation stable. We conclude that it is not reasonable to assume that practical instances are stable enough for the Price of Explainability to reduce, under these stability assumptions. en
heal.advisorName Φωτάκης, Δημήτριος el
heal.committeeMemberName Παγουρτζής, Αριστείδης el
heal.committeeMemberName Χατζηαφράτης, Ευάγγελος el
heal.committeeMemberName Φωτάκης, Δημήτριος el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών el
heal.academicPublisherID ntua
heal.numberOfPages 84 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής