HEAL DSpace

Beam Longitudinal Dynamics Simulation Code Acceleration with GPUs

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Τυπάλδος, Γεώργιος Αναστάσιος el
dc.contributor.author Typaldos, Georgios Anastasios en
dc.date.accessioned 2023-05-31T11:14:19Z
dc.date.available 2023-05-31T11:14:19Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/57783
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.25480
dc.rights Αναφορά Δημιουργού - Παρόμοια Διανομή 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-sa/3.0/gr/ *
dc.subject Κάρτες γραφικών el
dc.subject Παράλληλος Προγραμματισμός el
dc.subject Υπολογιστική υψηλών επιδόσεων el
dc.subject Προγραμματισμός σε CUDA el
dc.subject Διαμήκης δυναμική δέσμης el
dc.subject Beam Longitudinal Dynamics en
dc.subject CUDA en
dc.subject GPU en
dc.subject High Performance Computing en
dc.title Beam Longitudinal Dynamics Simulation Code Acceleration with GPUs en
heal.type bachelorThesis
heal.classification High Performance Computing en
heal.language el
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2023-03-21
heal.abstract The Beam Longitudinal Dynamics (BLonD) suite is an open-source software package for the simulation of the longitudinal motion of particles in synchrotrons. It has been developed at CERN since 2014 and features a modular structure that allows the user to combine a variety of physics phenomena according to the study requirements. This thesis’s scope is upgrading the BLonD suite by modifying the GPU implementation to host the CuPy Python library rather than the PyCUDA library for GPU acceleration, as it provides a NumPy-like interface and low-level CUDA functionalities. This results in software simplicity, thus a better user experience, and performance enhancements, which achieve significant execution speedup. Various hardware structures and optimization techniques, such as GPU memory hierarchy and thread-coarsening, are tested for additional performance gain. A custom Python roofline model tool is also developed and utilized to assess the efficiency of main kernels. The BLonD-CuPy implementation is evaluated using three NVIDIA GPU models and compared against a multithreaded AMD CPU implementation executed on 16 cores. The CuPy GPU version significantly surpasses the CPU and the previous PyCUDA version’s performance. It achieves up to 80 CPU speedup for intensive configurations and powerful GPU models, versus a respective 75 PyCUDA speedup, while minimizing the required CUDA lines of code from 2600 to 350. en
heal.advisorName Σούντρης, Δημήτριος el
heal.committeeMemberName Σούντρης, Δημήτριος el
heal.committeeMemberName Τσανάκας, Παναγιώτης el
heal.committeeMemberName Ξύδης, Σωτήριος el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών. Εργαστήριο Μικροϋπολογιστών και Ψηφιακών Συστημάτων VLSI el
heal.academicPublisherID ntua
heal.numberOfPages 72 σ. el
heal.fullTextAvailability false


Files in this item

The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record

Αναφορά Δημιουργού - Παρόμοια Διανομή 3.0 Ελλάδα Except where otherwise noted, this item's license is described as Αναφορά Δημιουργού - Παρόμοια Διανομή 3.0 Ελλάδα