| dc.contributor.author | Μπλήτας, Δημήτριος
|
el |
| dc.contributor.author | Blitas, Dimitrios
|
en |
| dc.date.accessioned | 2023-06-09T07:43:01Z | |
| dc.date.available | 2023-06-09T07:43:01Z | |
| dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/57809 | |
| dc.identifier.uri | http://dx.doi.org/10.26240/heal.ntua.25506 | |
| dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα | * |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ | * |
| dc.subject | Μηχανική μάθηση | el |
| dc.subject | Καταλυτική Πυρόλυση | el |
| dc.subject | Νευρωνικά δίκτυα | el |
| dc.subject | Ενσωμάτωση δεδομένων | el |
| dc.subject | Βιομηχανική προσομοίωση | el |
| dc.subject | Machine learning | en |
| dc.subject | Catalytic cracking | en |
| dc.subject | Neural networks | en |
| dc.subject | Data embedding | en |
| dc.subject | Industrial simulation | en |
| dc.title | Προσομοίωση της καταλυτικής πυρόλυσης με χρήση μηχανικής μάθησης και ενσωμάτωσης δεδομένων | el |
| dc.title | Data embedding and machine learning in modeling industrial fluid catalytic cracking reactors | en |
| heal.type | bachelorThesis | |
| heal.classification | Process engineering | en |
| heal.language | el | |
| heal.access | free | |
| heal.recordProvider | ntua | el |
| heal.publicationDate | 2023-03-10 | |
| heal.abstract | Fluid catalytic cracking is a both a critical and complex operation for refineries. Furthermore, the nature of the process (complex feedstock, complex sets of reactions and products) bears similarity with the complexity of emerging technologies in bio-renewables such as pyrolysis or hydrothermal liquefaction. FCC models are either linear and bilinear models adapted by regression or data-driven models. Instead, the paper explores machine-learning technologies to combine first-principle based models by embedding operational data from a real process. This artificial data, derived from equation-based models acts directly on neural network parameters, steering them in the right direction without the formation of new or updated input-output equations. The embedding provides for a systematic use of measurements form the plant while the first-principle based models offer a basis to explain the performance of the model. Early results illustrate very satisfactory accuracy, faster times and the opportunity to reduce the complexity of the process. | en |
| heal.advisorName | Kokossis, Antonis
|
en |
| heal.committeeMemberName | Karonis, Dimitrios
|
en |
| heal.committeeMemberName | Tsopelas, Fotios
|
en |
| heal.academicPublisher | Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Χημικών Μηχανικών. Τομέας Ανάλυσης, Σχεδιασμού και Ανάπτυξης Διεργασιών και Συστημάτων (ΙΙ) | el |
| heal.academicPublisherID | ntua | |
| heal.numberOfPages | 127 σ. | el |
| heal.fullTextAvailability | false |
The following license files are associated with this item: