HEAL DSpace

Machine Learning in Fantasy Premier League

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Βαλουξής, Σπυρίδων el
dc.contributor.author Valouxis, Spiros en
dc.date.accessioned 2023-09-06T09:22:43Z
dc.date.available 2023-09-06T09:22:43Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/58026
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.25723
dc.rights Default License
dc.subject Μηχανική Μάθηση el
dc.subject Aναμενόμενη Αξία el
dc.subject Βελτιστοποίηση el
dc.subject Επιστήμη Δεδομένων el
dc.subject Παιχνίδια Φάντασι el
dc.subject Fantasy Premier League en
dc.subject Machine Learning en
dc.subject Optimization en
dc.subject Expected Value en
dc.subject Data Science en
dc.title Machine Learning in Fantasy Premier League en
dc.contributor.department Division of Computer Science - Artificial Intelligence and Learning Systems Laboratory el
heal.type bachelorThesis
heal.classification Data Science en
heal.classification Machine Learning en
heal.classification Optimization en
heal.language el
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2023-06-21
heal.abstract The world of fantasy sports has witnessed a surge in popularity, with Fantasy Premier League (FPL) standing out as a leader in the field. This diploma thesis focuses on the application of machine learning techniques in Fantasy Premier League (FPL) to enhance team performance and decision-making. The research objectives were threefold: to develop machine learning models for predicting Expected Value (EV), to generate optimal moves based on the predicted EV values, and to contribute to the field of FPL analytics by advancing the application of machine learning techniques. The growing popularity of FPL (over 11.4 million teams in the 2022/23 season) has increased the demand for data-driven strategies across the community to gain a competitive edge. While previous efforts by the FPL community have explored similar concepts, our study presents the first open-source, full-scale FPL model utilizing machine learning techniques. The results of our research demonstrate the superiority of our model compared to most of the other existing models. Through rigorous evaluation using various metrics (MAE, RMSE, R² score), our models consistently outperformed almost all competitors in predicting EV. Furthermore, a noteworthy achievement was the top-ranking performance of the team managed by our model in the GW24 league, surpassing over 25,000 competing teams by the end of the season. By successfully integrating machine learning and optimization algorithms, our project provides FPL managers with actionable recommendations for team selection, transfers, and strategic decision-making. This research significantly contributes to the field of FPL Analytics by offering an innovative solution that enhances team performance and provides valuable insights for managers seeking to improve their FPL results. en
heal.advisorName Κόλλιας, Στέφανος el
heal.committeeMemberName Κόλλιας, Στέφανος el
heal.committeeMemberName Στάμου, Γιώργος el
heal.committeeMemberName Βουλόδημος, Αθανάσιος el
heal.committeeMemberName Τζούβελη, Παρασκευή el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών el
heal.academicPublisherID ntua
heal.numberOfPages 119 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής