dc.contributor.author |
Κολέρη, Χριστίνα
|
el |
dc.contributor.author |
Koleri, Christina
|
en |
dc.date.accessioned |
2023-09-25T10:20:49Z |
|
dc.date.available |
2023-09-25T10:20:49Z |
|
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/58093 |
|
dc.identifier.uri |
http://dx.doi.org/10.26240/heal.ntua.25790 |
|
dc.rights |
Default License |
|
dc.subject |
Νευρωνικά Δίκτυα |
el |
dc.subject |
Μηχανική Μάθηση |
el |
dc.subject |
Συστημική Βιολογία |
el |
dc.subject |
Machine Learning |
en |
dc.subject |
Neural Networks |
en |
dc.subject |
System Biology |
en |
dc.title |
Ανάλυση σημασίας σηματοδοτικών υπο-δικτύων και συσχέτιση τους με το μηχανισμό δράσης
φαρμακολογικών ουσιών |
el |
dc.title |
Analysis of important signaling sub-networks for drug mechanism of action identification |
en |
dc.contributor.department |
BioSysLab |
el |
heal.type |
bachelorThesis |
|
heal.classification |
Μηχανική Μάθηση |
el |
heal.classification |
Machine Learning |
en |
heal.language |
en |
|
heal.access |
free |
|
heal.recordProvider |
ntua |
el |
heal.publicationDate |
2023-02-24 |
|
heal.abstract |
Deep learning has emerged as a powerful tool in the era of Big Data, addressing complex challenges across various research domains. This thesis focuses on the application of deep learning techniques to unravel the mechanisms of action for selected drugs using biological signaling networks. We present a comprehensive pipeline that identifies significant sub-networks within compound-induced signaling networks. By employing an unsupervised graph deep learning pipeline called deepSNEM, we transform compound-induced signaling networks into high-dimensional representations. Utilizing the deepSNEM embeddings and clustering with the k-means algorithm, distinct clusters enriched for specific inhibitors (mTOR, topoisomerase, HDAC, and protein synthesis inhibitors) are identified. Additionally, our pipeline incorporates a subgraph importance analysis, revealing critical nodes and subgraphs directly associated with the most prevalent mechanisms of action within each cluster. This analysis provides an interpretable framework for understanding the significance of individual proteins in the pathway. To demonstrate the practical utility of our approach, we apply deepSNEM and the subgraph importance pipeline to compounds' gene expression profiles from various experimental platforms. The results indicate that accurate hypotheses can be generated regarding the mechanisms of action for these compounds. In summary, our research offers an advanced methodology that combines deep learning techniques with signaling pathway data. By analyzing important signaling sub-networks, our pipeline contributes to the identification of drug mechanisms of action, providing valuable insights into the underlying processes driving compound effects. |
en |
heal.advisorName |
Αλεξόπουλος, Λεωνίδας |
el |
heal.committeeMemberName |
Προβατίδης, Χριστόφορος |
el |
heal.academicPublisher |
Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Μηχανολόγων Μηχανικών |
el |
heal.academicPublisherID |
ntua |
|
heal.numberOfPages |
55 σ. |
el |
heal.fullTextAvailability |
false |
|
heal.fullTextAvailability |
false |
|
heal.fullTextAvailability |
false |
|