HEAL DSpace

Ανάλυση σημασίας σηματοδοτικών υπο-δικτύων και συσχέτιση τους με το μηχανισμό δράσης φαρμακολογικών ουσιών

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Κολέρη, Χριστίνα el
dc.contributor.author Koleri, Christina en
dc.date.accessioned 2023-09-25T10:20:49Z
dc.date.available 2023-09-25T10:20:49Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/58093
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.25790
dc.rights Default License
dc.subject Νευρωνικά Δίκτυα el
dc.subject Μηχανική Μάθηση el
dc.subject Συστημική Βιολογία el
dc.subject Machine Learning en
dc.subject Neural Networks en
dc.subject System Biology en
dc.title Ανάλυση σημασίας σηματοδοτικών υπο-δικτύων και συσχέτιση τους με το μηχανισμό δράσης φαρμακολογικών ουσιών el
dc.title Analysis of important signaling sub-networks for drug mechanism of action identification en
dc.contributor.department BioSysLab el
heal.type bachelorThesis
heal.classification Μηχανική Μάθηση el
heal.classification Machine Learning en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2023-02-24
heal.abstract Deep learning has emerged as a powerful tool in the era of Big Data, addressing complex challenges across various research domains. This thesis focuses on the application of deep learning techniques to unravel the mechanisms of action for selected drugs using biological signaling networks. We present a comprehensive pipeline that identifies significant sub-networks within compound-induced signaling networks. By employing an unsupervised graph deep learning pipeline called deepSNEM, we transform compound-induced signaling networks into high-dimensional representations. Utilizing the deepSNEM embeddings and clustering with the k-means algorithm, distinct clusters enriched for specific inhibitors (mTOR, topoisomerase, HDAC, and protein synthesis inhibitors) are identified. Additionally, our pipeline incorporates a subgraph importance analysis, revealing critical nodes and subgraphs directly associated with the most prevalent mechanisms of action within each cluster. This analysis provides an interpretable framework for understanding the significance of individual proteins in the pathway. To demonstrate the practical utility of our approach, we apply deepSNEM and the subgraph importance pipeline to compounds' gene expression profiles from various experimental platforms. The results indicate that accurate hypotheses can be generated regarding the mechanisms of action for these compounds. In summary, our research offers an advanced methodology that combines deep learning techniques with signaling pathway data. By analyzing important signaling sub-networks, our pipeline contributes to the identification of drug mechanisms of action, providing valuable insights into the underlying processes driving compound effects. en
heal.advisorName Αλεξόπουλος, Λεωνίδας el
heal.committeeMemberName Προβατίδης, Χριστόφορος el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Μηχανολόγων Μηχανικών el
heal.academicPublisherID ntua
heal.numberOfPages 55 σ. el
heal.fullTextAvailability false
heal.fullTextAvailability false
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής