HEAL DSpace

Federated Learning for 6G HetNets' Physical Layer Optimization: Perspectives, Trends, and Challenges

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Bartsiokas, Ioannis
dc.contributor.author Gkonis, Panagiotis
dc.contributor.author Papazafeiropoulos, Anastasios
dc.contributor.author Kaklamani, Dimitra
dc.contributor.author Venieris, Iakovos
dc.date.accessioned 2023-10-17T19:27:55Z
dc.date.available 2023-10-17T19:27:55Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/58199
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.25895
dc.rights Αναφορά Δημιουργού-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nd/3.0/gr/ *
dc.subject 6G en
dc.subject Cell-Free Massive MIMO en
dc.subject Centralized Learning en
dc.subject Federated Learning en
dc.subject machine learning en
dc.subject Non-Orthogonal Multiple Access en
dc.subject Physical Layer en
dc.subject Radio Resource Management en
dc.subject Reconfigurable Intelligent Surface en
dc.title Federated Learning for 6G HetNets' Physical Layer Optimization: Perspectives, Trends, and Challenges en
heal.type bookChapter
heal.classification Telecommunications el
heal.contributorName Bartsiokas, Ioannis
heal.contributorName Gkonis, Panagiotis
heal.contributorName Papazafeiropoulos, Anastasios
heal.contributorName Kaklamani, Dimitra
heal.contributorName Venieris, Iakovos
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2025-01-01
heal.bibliographicCitation I. A. Bartsiokas, P. K. Gkonis, A.K. Papazafeiropoulos, D. I. Kaklamani and I. S. Venieris, "Federated Learning for 6G HetNets’ Physical Layer Optimization: Perspectives, Trends, and Challenges," Encyclopedia of Information Science and Technology, Sixth Edition, IGI Global, 2025, pp. 1-28, doi: 10.4018/978-1-6684-7366-5.ch070. en
heal.abstract This chapter presents a survey that focuses on the implementation of federated learning (FL) techniques in sixth generation (6G) networks’ physical layer (PHY) to meet the increasing user requirements. FL in PHY perspectives are discussed, along with the current trends and the present challenges in order to deploy efficient (cost, energy, spectral, computational) FL models for PHY tasks. Moreover, the utilization of FL methods is, also, discussed when channel state information (CSI) is not guaranteed in a 6G scenario. In such conditions, the joint use of cell free (CF) massive multiple-input-multiple-output (mMIMO), reconfigurable intelligent surfaces (RIS), and non-orthogonal multiple access (NOMA) and FL methods is proposed. Finally, an FL-based scheme for relay node (RN) placement in 6G networks is presented as an indicative use case for FL utilization in modern era networks. Results indicate that the proposed FL scheme overperforms state-of-the-art centralized learning schemes concerning the tradeoff between machine learning (ML) metrics maximization and training latency. en
heal.publisher IGI Global el
heal.fullTextAvailability false
heal.bookName Encyclopedia of Information Science and Technology, Sixth Edition en
dc.identifier.doi 10.4018/978-1-6684-7366-5.ch070 el


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Όχι Παράγωγα Έργα 3.0 Ελλάδα