HEAL DSpace

Irreversible energy transfer in the form of discrete breathers in nonlinear lattices with asymmetry.

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Παναγόπουλος, Παναγιώτης el
dc.contributor.author Panagopoulos, Panagiotis en
dc.date.accessioned 2023-11-24T08:02:36Z
dc.date.available 2023-11-24T08:02:36Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/58313
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.26009
dc.description Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Εφαρμοσμένες Μαθηματικές Επιστήμες” el
dc.rights Default License
dc.subject Energy transfer en
dc.subject Breathers en
dc.subject Nonlinear lattices en
dc.subject Complexification averaging method en
dc.subject Oscillators en
dc.title Irreversible energy transfer in the form of discrete breathers in nonlinear lattices with asymmetry. en
heal.type masterThesis
heal.classification Μαθηματικά el
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2023-07-12
heal.abstract Applied mathematics have played a highly significant role in the development of the science. One part of the applied mathematics that are of a high interest is transfer of energy. Over the years many scientists have tried to unlock the mysteries of the energy of a specific system. In this thesis, we shall see how energy transfers through a certain type of ”energy carrier”, called discrete breather. In Chapter 1, we present the general idea of solitons and their behavior. We study three important equations that have solitons as solutions. We also, study some special solitonic structures, which are called breathers. The importance of the breathers is going to be shown in chapter 2 and 4. In Chapter 2, we show how solitons have a direct connection with nonlinear lattices and how moving breathers make their appearance in nonlinear lattices. The first part is will be shown through the FPU problem and how the lattice they were studying has a deep connection with the KdV equation. The second part will be shown numerically. In Chapter 3, we present the complexification averaging method. This is done by first presenting the multiple scale method through an example. After that, by using a simple example again we show how passing to complex variables is useful to solving the problem. Finally, in Chapter 4, we study how energy transfers in a nonlinear lattice through travelling breathers. In particular, we study numerically what conditions have to be satisfied in order to achieve irreversible energy transfer. el
heal.advisorName Ρόθος, Βασίλειος el
heal.committeeMemberName Κομίνης, Ιωάννης el
heal.committeeMemberName Χαραλαμπόπουλος, Αντώνιος el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών el
heal.academicPublisherID ntua
heal.numberOfPages 66 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής