heal.abstract |
Η άνοια είναι μία νευροεκφυλιστική ασθένεια που επηρεάζει σημαντικά τις ανθρώπινες γν-
ωστικές λειτουργίες. Τα κυριότερα συμπτώματά της περιλαμβάνουν την εξασθένηση της
μνήμης, της σκέψης και των συλλογιστικών ικανοτήτων, προβλήματα που υποβαθμίζουν
έντονα την καθημερινή ζωή των ασθενών. Η ΄Ηπιας Μορφής Νοητική Εξασθένηση (MCI)
αποτελεί ένα ενδιάμεσο στάδιο μεταξύ της φυσιολογικής γνωστικής γήρανσης και της άνοιας.
Συγκεκριμένα, οι ασθενείς με MCI αν και παρουσιάζουν αισθητή γνωστική επιδείνωση, πέραν
της τυπικής γήρανσης, δεν πληρούν τα διαγνωστικά κριτήρια για άνοια. Ωστόσο, υπολογίζε-
ται ότι 10-40% των ασθενών με MCI αναπτύσσουν άνοια, καθιστώντας το MCI κρίσιμο
παράγοντα κινδύνου για την ανάπτυξη της. Η παρούσα έρευνα αποσκοπεί στη μελέτη της
εξέλιξης του MCI με χρήση τεχνικών μηχανικής μάθησης (ML) για τη διάκριση μεταξύ των
ασθενών με MCI που παρουσιάζουν εξέλιξη σε άνοια (MCIp) και εκείνων που παραμένουν
σταθεροί (MCIs). Στην προτεινόμενη μέθοδο χρησιμοποιούνται ογκομετρικές μετρήσεις που
αντλήθηκαν από διαχρονικά δεδομένα T1-σταθμισμένων εικόνων μαγνητικής τομογραφίας
του εγκεφάλου από ασθενείς με MCI, ασθενείς με άνοια και υγιή άτομα. Για τη διάκριση
μεταξύ των ασθενών με MCI που παρουσιάζουν εξέλιξη και εκείνων που παραμένουν στα-
θεροί, το σύνολο δεδομένων μετατράπηκε σε σύνολο δεδομένων MCIp-MCIs. Στη συνέχεια
αναπτύχθηκαν οι αλγόριθμοι ταξινόμησης Partial Least Squares Discriminant Analysis
(PLSDA) και Μηχανές Διανυσμάτων Υποστήριξης (SVM). Επιπλέον, για να ενισχυθεί η
αξιοπιστία των μοντέλων, χρησιμοποιήθηκαν οι μέθοδοι ερμηνευσιμότητας Τιμές Shapley και
Αντιφατικά Παραδείγματα Permute Attack. Το προτεινόμενο μοντέλο με τα αποδοτικότερα
αποτελέσματα ήταν το μοντέλο PLSDA με ακρίβεια 79.8% και AUC-ROC 71.4%, ενώ τα
αποτελέσματα ερμηνευσιμότητας έδειξαν ότι οι πλάγιες κοιλίες, ο ιππόκαμπος, η αμυγδαλή, η
ατρακτοειδής και η κροταφική έλικα είναι οι περιοχές με τη μεγαλύτερη επιρροή όσον αφορά
την εξέλιξη του MCI σε άνοια. |
el |