HEAL DSpace

Ανίχνευση ανωμαλιών Zero-day με χρήση AutoEncoders

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Μπαζώτης, Νικόλαος el
dc.contributor.author Bazotis, Nikolaos en
dc.date.accessioned 2024-01-11T08:32:22Z
dc.date.available 2024-01-11T08:32:22Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/58563
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.26259
dc.rights Default License
dc.subject Νευρωνικά Δίκτυα el
dc.subject Μηχανική Μάθηση el
dc.subject Σύστημα Ανίχνευσης Διείσδυσης el
dc.subject Επιθέσεις Zero-day el
dc.subject Μη επιβλεπώμενη μάθηση el
dc.subject Deep learning en
dc.subject Neural nets en
dc.subject Cyber security en
dc.subject Intrusion Detection Systems en
dc.subject Unsupervised learning en
dc.title Ανίχνευση ανωμαλιών Zero-day με χρήση AutoEncoders el
heal.type bachelorThesis
heal.secondaryTitle Zero-day Anomaly Detection using AutoEncoders en
heal.generalDescription Intrusion Detection System using AutoEncoders for zero-day attack anomaly detection en
heal.classification Deep Learning en
heal.classification IT systems en
heal.classification Communications en
heal.classification Intrusion Detection System en
heal.language en
heal.access campus
heal.recordProvider ntua el
heal.publicationDate 2023-07-10
heal.abstract Zero-day attacks have become increasingly sophisticated in recent years, presenting a significant threat to both businesses and individuals. The danger lies in these attacks exploiting unknown vulnerabilities in software or hardware, making traditional security measures often ineffective. Consequently, organizations are left vulnerable to data breaches, financial losses, and reputational damage. In the wake of this escalating threat, cyber security researchers and practitioners are turning to deep learning techniques such as AutoEncoders. Particularly, the focus is on unsupervised learning, which relies on unlabeled data. This approach circumvents the challenges and potential inaccuracies associated with data labeling, thereby offering a more effective defense mechanism against zero-day attacks. This diploma thesis sets out to implement a Network Threat Detection System using AutoEncoders, targeting early detection of zero-day attacks before they can be exploited. The proposed system will leverage the CICIDS 2017 dataset, a well-recognized benchmark for evaluating intrusion detection systems, encompassing network traffic data that simulates diverse types of attacks, including zero-day attacks. Training the deep learning model on this dataset enables the system to identify anomalies in network traffic data and flag potential zero-day attacks. An integral part of this work involves experimenting with different kinds of AutoEncoders, such as Denoising AutoEncoders, Variational AutoEncoders (VAEs), Deep AutoEncoders, and Beta VAEs. A comparative study is carried out between these models, and their performance is measured against shallow models from existing literature, specifically SVM in this case. Through such rigorous experimentation and comparison, this thesis aims to advance the current understanding and application of deep learning techniques in preventing zero-day attacks. en
heal.advisorName Maglaris, Vasilis en
heal.committeeMemberName Stamou, Giorgos en
heal.committeeMemberName Παπαβασιλείου, Συμεών el
heal.committeeMemberName Σύκας, Ευστάθιος el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Επικοινωνιών, Ηλεκτρονικής και Συστημάτων Πληροφορικής el
heal.academicPublisherID ntua
heal.numberOfPages 126 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής