dc.contributor.author | Mentzos, Georgios | en |
dc.contributor.author | Μέντζος, Γεώργιος | el |
dc.date.accessioned | 2024-04-12T09:57:06Z | |
dc.date.available | 2024-04-12T09:57:06Z | |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/59156 | |
dc.identifier.uri | http://dx.doi.org/10.26240/heal.ntua.26852 | |
dc.rights | Αναφορά Δημιουργού 3.0 Ελλάδα | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/gr/ | * |
dc.subject | Προσεγγιστικός Υπολογισμός | el |
dc.subject | Μικροσκοπική Μηχανική Μάθηση | el |
dc.subject | Συνελικτικό Νευρωνικό Δίκτυο | el |
dc.subject | Μικροελεγκτές | el |
dc.subject | Προσαρμοσμένη Σχεδίαση | el |
dc.subject | Approximate Computing | en |
dc.subject | Microcontrollers | en |
dc.subject | TinyML | en |
dc.subject | Convolutional Neural Network | en |
dc.subject | Bespoke Design | en |
dc.title | Exploring Kernel approximations for TinyML inference acceleration on microcontrollers | en |
heal.type | bachelorThesis | |
heal.classification | Computer Science and Engineering | en |
heal.classification | Embedded Systems | en |
heal.language | el | |
heal.language | en | |
heal.access | free | |
heal.recordProvider | ntua | el |
heal.publicationDate | 2023-10-24 | |
heal.abstract | The rapid growth of always-on microcontroller-based IoT devices has opened up numerous applications, from smart manufacturing to personalized healthcare. Despite the widespread adoption of energy-efficient microcontroller units (MCUs) in the Tiny Maching Learning (TinyML) domain, they face significant limitations in terms of performance and memory (RAM, Flash), especially when considering deep networks for complex classification tasks. In this work, we combine approximate computing and software kernel design to accelerate the inference of approximate CNN models on MCUs. Our kernel-based approximation framework first unpacks the operands of each convolution layer and then performs an offline significance calculation for each operand. Subsequently, through a design space exploration, it employs a computation skipping approximation strategy based on the calculated significance, offering various trade-offs between reduced computations and classification accuracy. Our evaluation, conducted on an STM32-Nucleo board using three popular CNNs trained on the CIFAR-10 dataset, demonstrates that our Pareto optimal solutions can yield significant benefits. Compared to state-of-the-art exact inference methods, our approach achieves 9% reduction in latency with almost zero degradation in Top-1 accuracy loss (<1%) on MCUs with cache-enabled architecture. Furthermore, when targeting non-cached MCUs, the latency reduction is highly increased to 37%, again at the expense of less than 1% Top-1 accuracy loss. The various trade-offs explored in this thesis, hold the potential to enable more practical applications and the deployment of deeper networks on compact MCUs. | en |
heal.advisorName | Σούντρης, Δημήτριος | el |
heal.committeeMemberName | Σούντρης, Δημήτριος | el |
heal.committeeMemberName | Τσανάκας, Παναγιώτης | el |
heal.committeeMemberName | Ξύδης, Σωτήριος | el |
heal.academicPublisher | Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών. Εργαστήριο Μικροϋπολογιστών και Ψηφιακών Συστημάτων VLSI | el |
heal.academicPublisherID | ntua | |
heal.numberOfPages | 92 σ. | el |
heal.fullTextAvailability | false |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: