HEAL DSpace

Effective methods for deep neural network sparsification

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Glentis Georgoulakis, Athanasios el
dc.contributor.author Γλεντής Γεωργουλάκης, Αθανάσιος en
dc.date.accessioned 2024-04-22T09:41:18Z
dc.date.available 2024-04-22T09:41:18Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/59238
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.26934
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject DNN Compression en
dc.subject Sparsification en
dc.subject Weight Pruning en
dc.subject Sparse Training en
dc.subject Efficient Vision en
dc.subject Συμπίεση Νευρωνικών Δικτύων el
dc.subject Αραίωση Παραμέτρων el
dc.subject Κλάδεμα Βαρών el
dc.subject Αραιή Εκπαίδευση el
dc.subject Αποδοτική Όραση el
dc.title Effective methods for deep neural network sparsification en
heal.type bachelorThesis
heal.classification Computer Vision en
heal.classification Machine Learning en
heal.classification Όραση Υπολογιστών el
heal.classification Μηχανική Μάθηση el
heal.language el
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2023-10-20
heal.abstract In recent years, Deep Neural Networks (DNNs) have significantly advanced the state-of-the-art in numerous machine learning tasks. Unfortunately, most compact devices that rely on embedded computing systems with limited resources cannot support the deployment of such powerful DNNs. This has driven considerable research efforts towards creating compact and efficient versions of these models. A prominent method among the model compression literature is neural network pruning, involving the removal of unimportant network elements with the goal of obtaining compressed, yet highly effective models. In this thesis, we focus on removing individual weights based on their magnitudes encompassing the sparsification process during the standard course of training (sparse training), therefore avoiding multi-cycle training and fine-tuning procedures. In the first part of the thesis we propose a pruning solution that tackles the problem of sparsity allocation over the different layers of the DNN. Modeling the distributions of the weights per-layer in a novel way as Gaussian or Laplace enables the method to learn the pruning thresholds through the optimization process, resulting in an effective non-uniform sparsity allocation for a requested overall sparsity target. In the second part of this work, recognizing that the Straight-Through Estimator is a crucial component of the aforementioned method and of sparse training in general, we devote our efforts into improving its effectiveness. This leads to the introduction of Feather, a novel sparse training module utilizing the powerful Straight-Through Estimator as its core, coupled with a new thresholding operator and a gradient scaling technique that enable robust state-of-the-art sparsification performance. More specifically, the thresholding operator balances the currently used ones, namely the hard and soft operators, combining their advantages, while gradient scaling controls the sparsity pattern variations, leading to a more stable training procedure. Both proposed methods are tested on the CIFAR and ImageNet datasets for image classification using various architectures, resulting into state-of-the-art performances. In particular, Feather achieves Top-1 validation accuracies on ImageNet using the ResNet-50 architecture that surpass those obtained from existing methods, including more complex and computationally demanding ones, by a considerable margin. en
heal.advisorName Maragos, Petros en
heal.advisorName Μαραγκός, Πέτρος el
heal.committeeMemberName Μαραγκός, Πέτρος el
heal.committeeMemberName Ποταμιάνος, Γεράσιμος el
heal.committeeMemberName Ροντογιάννης, Αθανάσιος el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Σημάτων, Ελέγχου και Ρομποτικής el
heal.academicPublisherID ntua
heal.numberOfPages 101 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα