HEAL DSpace

Prediction of drug-to-drug interactions through zero-shot learning

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Αστράς, Νικόλαος el
dc.contributor.author Astras, Nikolaos en
dc.date.accessioned 2024-05-27T10:32:43Z
dc.date.available 2024-05-27T10:32:43Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/59494
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.27190
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc/3.0/gr/ *
dc.subject Word Embeddings en
dc.subject Drug-to-drug interactions en
dc.subject Machine Learning en
dc.subject Μάθηση χωρίς δεδομένα el
dc.subject Ταξινόμηση πολλαπλών ετικετών el
dc.subject Αλληλεπιδράσεις Φαρμάκων el
dc.subject Μηχανική Μάθηση el
dc.subject Multi-label classification en
dc.subject Zero-Shot Learning en
dc.subject Διανυσματικές αναπαραστάσεις λέξεων el
dc.title Prediction of drug-to-drug interactions through zero-shot learning en
heal.type bachelorThesis
heal.classification Computer Science en
heal.classification Πληροφορική el
heal.language el
heal.language en
heal.access campus
heal.recordProvider ntua el
heal.publicationDate 2024-02-01
heal.abstract Drug-to-drug interactions (DDIs) are a crucial aspect of medication management. While estimates vary, some studies suggest that DDIs may be responsible for up to 20\% of the adverse drug reactions requiring hospitalization. Conventional methods for predicting those interactions rely on analyzing the pharmaceutical properties of drugs, clinical findings, and literature references. In recent years, approaches based on machine learning have emerged as a promising alternative, taking advantage of the vast biomedical data currently available, to identify relations between drugs and side effects, leading to highly accurate predictions. In this thesis, we differentiate by adopting the Zero-shot learning (ZSL) paradigm to tackle the challenge of DDI prediction. ZSL is a modern ML technique, that enables models to generalize beyond the classes encountered during training, and make predictions for unseen classes. To achieve this, we leveraged a ZSL framework that relies on feature vectors extracted from both instances and classes. The framework effectively tries to capture and simplify the complex underlying relationships between different drug pairs and side effects. We should mention that a single drug combination can result in multiple side effects, necessitating appropriate modifications to account for this possibility. Our goal is to develop a DDI prediction pipeline that, with the necessary adjustments, can serve as a valuable resource for identifying and mitigating potential drug-drug interactions. en
heal.advisorName Τσανάκας, Παναγιώτης el
heal.committeeMemberName Σταφυλοπάτης, Ανδρέας el
heal.committeeMemberName Ματσόπουλος, Γεώργιος el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών el
heal.academicPublisherID ntua
heal.numberOfPages 65 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση 3.0 Ελλάδα